Phần 1 Hình học họa hình

Trong kỹ thuật, bản vẽ kỹ thuật( trên giấy) được sử dụng trong sản xuất và trao đổi thông tin giữa các nhà thiết kế. Bản vẽ kỹ thuật là một mặt phẳng 2 chiều còn hầu hết vật thể đều là các vật thể 3 chiều. Vậy làm sao để biểu diễn các đối tượng 3 chiều lên mặt phẳng 2 chiều?

ppt123 trang | Chia sẻ: maiphuongtt | Lượt xem: 16926 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Phần 1 Hình học họa hình, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
PHẦN 1 HÌNH HỌC HỌA HÌNH Bài Mở đầu Trong kỹ thuật, bản vẽ kỹ thuật( trên giấy) được sử dụng trong sản xuất và trao đổi thông tin giữa các nhà thiết kế. Bản vẽ kỹ thuật là một mặt phẳng 2 chiều còn hầu hết vật thể đều là các vật thể 3 chiều. Vậy làm sao để biểu diễn các đối tượng 3 chiều lên mặt phẳng 2 chiều? Hình họa Gaspard Monge I- Đối tượng môn học - Nghiên cứu các phương pháp biểu diễn các hình không gian trên một mặt phẳng - Nghiên cứu các phương pháp giải các bài toán không gian trên một mặt phẳng II- Các phép chiếu 1- Phép chiếu xuyên tâm a) Xây dựng phép chiếu - Cho mặt phẳng Π, một điểm S không thuộc Π và một điểm A bất kỳ. - Gọi A’ là giao của đường thẳng SA với mặt phẳng Π. *Ta có các định nghĩa sau: + Mặt phẳng Π gọi là mặt phẳng hình chiếu + Điểm S gọi là tâm chiếu + Điểm A’ gọi là hình chiếu xuyên tâm của điểm A lên mặt phẳng hình chiếu Π + Đường thẳng SA gọi là tia chiếu của điểm A A A’ Hình 0.1 Xây dựng phép chiếu xuyên tâm S П - Nếu AB là đoạn thẳng không đi qua tâm chiếu S thì hình chiếu xuyên tâm của nó là một đoạn thẳng A’B’. - Nếu CD là đường thẳng đi qua tâm chiếu S thì C’=D’.(Hình chiếu suy biến) (Hình 0.2.a) - Hình chiếu xuyên tâm của các đường thẳng song song nói chung là các đường đồng quy. (Hình 0.2.b) A A’ Hình 0.2a,b Tính chất phép chiếu xuyên tâm S B’ B C D C’=D’ b) Tính chất phép chiếu S C’ A’ B’ D’ F’ E’ T’ a) b) A B E F D C П П 2- Phép chiếu song song a) Xây dựng phép chiếu - Cho mặt phẳng Π, một đường thẳng s không song song mặt phẳng Π và một điểm A bất kỳ trong không gian. - Qua A kẻ đường thẳng a//s . A’ là giao của đường thẳng a với mặt phẳng Π. * Ta có các định nghĩa sau: + Mặt phẳng Π gọi là mặt phẳng hình chiếu + Đường thẳng s gọi là phương chiếu + Điểm A’ gọi là hình chiếu song song của điểm A lên mặt phẳng hình chiếu Π theo phương chiếu s + Đường thẳng a gọi là tia chiếu của điểm A A A’ Hình 0.3 Xây dựng phép chiếu xuyên tâm s П a A A’ Hình 0.4a,b Tính chất phép chiếu song song s B’ B C D C’=D’ b) Tính chất phép chiếu - Nếu đường thẳng AB không song song với phương chiếu s thì hình chiếu song song của nó là đường thẳng A’B’ - Nếu CD song song với phương chiếu s thì hình chiếu song song của nó là một điểm C’=D’ - Nếu M thuộc đoạn AB thì M’ thuộc A’B’ + Tỷ số đơn của 3 điểm không đổi: - Nếu MN//QP thì: - Nếu IK// Π thì: a) b) П M M’ M s N’ N Q P’ Q’ П M’ P K’ I’ I K 3- Phép chiếu vuông góc - Phép chiếu vuông góc trường hợp đặc biệt của phép chiếu song song khi phương chiếu vuông góc với mặt phẳng hình chiếu. - Phép chiếu vuông góc có đầy đủ tính chất của phép chiếu song song, ngoài ra có thêm các tính chất sau: + Chỉ có một phương chiếu s duy nhất + Giả sử AB tạo với П một góc φ thì: A’B’=AB.cosφ A’B’ ≤ AB - Sau đây là những ứng dụng của phép chiếu vuông góc mà ta gọi là phương pháp hình chiếu thẳng góc A A’ Hình 0.5a,b. Phép chiếu vuông góc s П a A A’ s П B B’ φ a) b) Bài 1 Điểm I – Đồ thức của một điểm 1– Hệ thống hai mặt phẳng hình chiếu a) Xây dựng đồ thức - Trong không gian lấy hai mặt phẳng vuông góc nhau П1 và П2. - Mặt phẳng П1 có vị trí thẳng đứng. - Mặt phẳng П2 có vị trí nằm ngang. - Gọi x là giao điểm của П1 và П2 (x = П1∩П2 ) - Chiếu vuông góc điểm A lên mặt phẳng П1và П2 ta nhận được các hình chiếu A1 và A2 - Cố định mặt phẳng П1, quay mặt phẳng П2 quanh đường thẳng x theo chiều quay được chỉ ra trên Hình 1.1.a cho đến khi П2 trùng vớiП1. Ta nhận được đồ thức của điểm A trong hệ hai mặt phẳng hình chiếu (Hình 1.1.b) Hình 1.1a,b. Xây dựng đồ thức của một điểm trên hệ thống hai mặt phẳng hình chiếu a) b) A A1 A2 Ax x A A1 Π1 x Ax Π1 Π2 A2 Π2 b) Các định nghĩa và tính chất - Mặt phẳng П1: mặt phẳng hình chiếu đứng - Mặt phẳng П2: mặt phẳng hình chiếu bằng - Đường thẳng x : trục hình chiếu - A1: hình chiếu đứng của điểm A - A2: hình chiếu bằng của điểm A - Gọi Ax là giao của trục x và mặt phẳng (AA1A2) - Trên đồ thức, A1,Ax, A2 cùng nằm trên một đường thẳng vuông góc với trục x gọi là đường dóng thẳng đứng. Hình 1.1a,b. Xây dựng đồ thức của một điểm trên hệ thống hai mặt phẳng hình chiếu a) b) A A1 A2 Ax x A A1 Π1 x Ax Π1 Π2 A2 Π2 * Độ cao của một điểm - Ta có: gọi là độ cao của điểm A - Quy ước: + Độ cao dương : khi điểm A nằm phía trên П2 + Độ cao âm: khi điểm A nằm phía dưới П2. - Dấu hiệu nhận biết trên đồ thức: + Độ cao dương: A1 nằm phía trên trục x + Độ cao âm: A1 nằm phía dưới trục x Hình 1.1a,b. Xây dựng đồ thức của một điểm trên hệ thống hai mặt phẳng hình chiếu a) b) A A1 A2 Ax x A A1 Π1 x Ax Π1 Π2 A2 Π2 * Độ xa của một điểm - Ta có: gọi là độ xa của điểm A - Quy ước: + Độ xa dương : khi điểm A nằm phía trước П1 + Độ xa âm: khi điểm A nằm phía sau П1. - Dấu hiệu nhận biết trên đồ thức: + Độ xa dương: A2 nằm phía dưới trục x + Độ xa âm: A2 nằm phía trên trục x *Chú ý: Với một điểm A trong không gian có đồ thức là một cặp hình chiếu A1, A2. Ngược lại cho đồ thức A1 A2 , ta có thể xây dựng lại điểm A duy nhất trong không gian. Như vậy đồ thức của một điểm A có tính phản chuyển Hình 1.1a,b. Xây dựng đồ thức của một điểm trên hệ thống hai mặt phẳng hình chiếu x Ax A2 Π2 a) A A1 A2 Ax x Π1 Π2 b) A1 2– Hệ thống ba mặt phẳng hình chiếu a) Xây dựng đồ thức - Trong không gian, lấy ba mặt phẳng П1’ П2,П3 vuông góc với nhau từng đôi một. + Gọi x là giao điểm của П1 và П2 (y = П1∩П2) + Gọi y là giao điểm của П2 và П3 (y = П2∩П3) + Gọi z là giao điểm của П1 và П3 (z = П1∩П3) - Chiếu vuông góc điểm A lên mặt phẳng П1, П2 và П3 ta nhận được các hình chiếu A1 , A2 và A3 - Cố định mặt phẳng П1, quay mặt phẳng П2 quanh đường thẳng x, quay mặt phẳng П3 quanh trục z theo chiều quay được chỉ ra trên Hình 1.2.a cho đến khi П2 trùng với П1,П3 trùng với П1. Ta nhận được đồ thức của điểm A trong hệ hai mặt phẳng hình chiếu (Hình 1.2.b) Hình 1.2a,b. Xây dựng đồ thức của một điểm trên hệ thống ba mặt phẳng hình chiếu b) A A1 x Ax A2 a) A2 Π2 x A A1 Ax A3 A2 Ay Az Π1 Π3 z y Π1 Π3 Π2 A3 z y y O Az Ay Ay O b) Các định nghĩa và tính chất Bổ xung thêm các định nghĩa và tính chất sau: - Mặt phẳng П3: mặt phẳng hình chiếu cạnh - Đường thẳng x, y, z : trục hình chiếu - A3: hình chiếu cạnh của điểm A - Gọi - Trên đồ thức: + A1, Ax, A2 cùng nằm trên một đường thẳng vuông góc với trục x gọi là đường dóng thẳng đứng + A1, Az, A3 cùng nằm trên một đường thẳng song song với trục x gọi là đường dóng nằm ngang. Hình 1.2a,b. Xây dựng đồ thức của một điểm trên hệ thống ba mặt phẳng hình chiếu b) A A1 x Ax A2 a) A2 Π2 x A A1 Ax A3 A2 Ay Az Π1 Π3 z y Π1 Π3 Π2 A3 z y y O Az Ay Ay O b) Các định nghĩa và tính chất (tiếp theo) * Độ xa cạnh của một điểm - Ta có: gọi là độ xa cạnh của điểm A - Quy ước: + Độ xa cạnh dương : khi điểm A nằm phía bên trái П3 + Độ xa cạnh âm: khi điểm A nằm phía bên phải П3. - Dấu hiệu nhận biết trên đồ thức: + Độ xa cạnh dương: A3 nằm phía bên phải trục z + Độ xa cạnh âm: A3 nằm phía bên trái trục z Hình 1.2a,b. Xây dựng đồ thức của một điểm trên hệ thống ba mặt phẳng hình chiếu b) A A1 x Ax A2 a) A2 Π2 x A A1 Ax A3 Ay Az Π1 Π3 z y Π1 Π3 Π2 A3 z y y O Az Ay Ay O A2 III – Một số định nghĩa khác 1– Góc phần tư - Hai mặt phẳng hình chiếu П1, П2 vuông góc với nhau chia không gian thành bốn phần, mỗi phần được gọi là một góc phần tư. + Phần không gian phía trước П1, trên П2 được gọi là góc phần tư thứ nhất. (I) + Phần không gian phía sau П1, trên П2 được gọi là góc phần tư thứ hai. (II) + Phần không gian phía sau П1, dưới П2 được gọi là góc phần tư thứ ba. (III) + Phần không gian phía trước П1, dưới П2 được gọi là góc phần tư thứ tư. (IV) Ví dụ: Tự cho đồ thức của các điểm A, B, C, D lần lượt thuộc các góc phần tư I, II, III, IV Hình 1.4. Góc phần tư I, II, III, IV A2 Π1 Π2 ( I ) ( IV ) ( III ) ( II ) x A2 A1 Π2 Π1 Hình 1.5. Các điểm A,B,C,D thuộc các góc phần tư I, II, III, IV B2 B1 C1 C2 D2 D1 2 – Mặt phẳng phân giác - Có hai mặt phẳng phân giác + Mặt phẳng đi qua trục x chia góc nhị diện phần tư (I) và góc phần tư (III) thành các phần bằng nhau gọi là mặt phẳng phân giác I. (Pg1) + Mặt phẳng đi qua trục x chia góc nhị diện phần tư (II) và góc phần tư (IV) thành các phần bằng nhau gọi là mặt phẳng phân giác II.(Pg2) Ví dụ: Vẽ đồ thức của các điểm A, B thuộc mặt phẳng phân giác I; C, D thuộc mặt phẳng phân giác II, A thuộc góc phần tư (I), B thuộc (III), C thuộc (II), D thuộc (IV) Hình 1.6. Mặt phẳng phân giác I và II A2 Π1 Π2 ( I ) ( IV ) ( III ) ( II ) x A2 A1 Π2 Π1 Hình 1.7. Đồ thức các điểm A,B,C,D thuộc mặt phẳng phân giác (P1) và (P2) (Pg1) (Pg2) B1 B2 C1 =D2 D1 =C2 x Ax Bx Cx Dx IV- Vẽ hình chiếu thứ ba của một điểm trên đồ thức Bài toán: Cho hình chiếu đứng và hình chiếu bằng của một điểm, tìm hình chiếu cạnh của điểm đó trên đồ thức. Ví dụ: Vẽ hình chiếu cạnh của các điểm A, B, C, D, E được cho trên đồ thức x(+) Ax A2 A3 z(+) y(+) O Az Ay Ay A1 Δ Δ’ y(+) x(+) Bx B2 B3 z(+) y(+) O Bz By By B1 Δ Δ’ x(+) Cx C1 C3 z(+) y(+) O Cz Cy Cy C2 Δ Δ’ x(+) Dx D2 D3 z(+) y(+) O Dz Dy Dy D1 Δ Δ’ y(+) x(+) Ex =E2 E3 z(+) y(+) O Ez =Ey E1 Δ Δ’ a) d) c) e) b) y(+) y(+) y(+) By Ey Bài 2 Đường thẳng I- Đồ thức của một đường thẳng Vì một đường thẳng đươc xác định bởi hai điểm phân biệt do đó để cho đồ thức của một đường thẳng ta cho đồ thức của hai điểm phân biệt thuộc đường thẳng đó. Ví dụ: Cho đồ thức của đường thẳng l; - l1 đi qua A1B1 gọi là hình chiếu đứng của đường thẳng l - l2 đi qua A2B2 gọi là hình chiếu bằng của đường thẳng l Hình 2.1. Đồ thức của một đường thẳng A1 B1 l1 l2 B2 A2 B A1 B2 Π1 Π2 A x A2 B1 l1 l2 l Chú ý: Nếu từ hình chiếu l1 và l2 của đường thẳng l ta xây dựng lại đường thẳng l duy nhất trong không gian thì đồ thức đường thẳng có tính chất phản chuyển, khi đó ta không cần cho các điểm A, B thuộc đuờng thẳng l II- Các đường thẳng có vị trí đặc biệt (đối với mặt phẳng hình chiếu) 1- Các đường thẳng đồng mức (là các đường thẳng song song với mặt phẳng hình chiếu) a) Đường bằng * Định nghĩa: Đường bằng là đường thẳng song song với mặt phẳng hình chiếu bằng П2. B A1 Π1 A x B1 B2 x A1 B1 h1 h A2 h1 h2   * Tính chất : - Hình chiếu đứng h1//x - Nếu có một đoạn thẳng AB thuộc đường bằng h thì hình chiếu bằng A2B2=AB - Góc h2,x = h, П1= α Hình 2.2. Đường bằng Π2 A2 h2  B2 b) Đường mặt * Định nghĩa: Đường mặt là đường thẳng song song với mặt phẳng hình chiếu đứng П1. Ví dụ: CD// П1 * Tính chất : - Hình chiếu bằng f2//x - Nếu có một đoạn thẳng CD thuộc đường mặt f thì hình chiếu đứng C1D1=CD - Góc f1,x = f, П2= β Hình 2.3. Đường mặt D C1 Π1 x D1 D2 x C1 D1 f1 f C2 f1 f2 β Π2 C2 f2 β D2 β C c) Đường cạnh * Định nghĩa: Đường cạnh là đường thẳng song song với mặt phẳng hình chiếu cạnh П3. * Tính chất : - p1 và p2 cùng nằm trên một đường thẳng vuông góc với trục x - Nếu có một đoạn thẳng EF thuộc đường mặt p thì hình chiếu cạnh E3F3=EF - Góc p3,z = p, П1= α - Góc p3,y = p, П2= β Hình 2.4. Đường cạnh A2 Π2 x E F2 F1 F3 E3 Π1 Π3 z y O F α β x F2 E3 z y F3 E1 y p1 p p2 E2 E1 Ax O F1 p1 p2 E2 α β p3 p3 α β Hình 2.4. Đường cạnh A2 x F3 E3 Π1 Π3 z y O F α β x F2 E3 z y F3 E1 y Ax O F1 p1 p2 E21 α β p3 p3 Π2 E F2 F1 p1 p p2 E2 E1 Chú ý: Với đường cạnh p, nếu biết các hình chiếu p1, p2 ta không xác định được đường thẳng p duy nhất trong không gian. Do đó ta phải cho đồ thức của hai điểm phân biệt. Ví dụ: Cho E, F thuộc đường thẳng p. Hai điểm E, F xác định một đường thẳng p duy nhất. (Hình 2.4) 2- Các đường thẳng chiếu (là các đường thẳng vuông góc với mặt phẳng hình chiếu) a) Đường thẳng chiếu đứng * Định nghĩa: là đường thẳng vuông góc với mặt phẳng hình chiếu đứng П1. Ví dụ: B A1 Π1 A x ≡ B1 B2 x A1 =B1 A2 * Tính chất : - Hình chiếu đứng của AB là một điểm A1 ≡ B1 - Hình chiếu bằng - A2B2=AB Hình 2.5. Đường thẳng chiếu đứng Π2 A2 B2 b) Đường thẳng chiếu bằng * Định nghĩa: là đường thẳng vuông góc với mặt phẳng hình chiếu bằng П2. Ví dụ: D C1 Π1 C x ≡D2 D1 x C2 D1 C1 * Tính chất : - Hình chiếu bằng của CD là một điểm C2≡ D2 - Hình chiếu đứng - C1D1=CD Hình 2.6. Đường thẳng chiếu bằng Π2 C2 ≡D2 c) Đường thẳng chiếu cạnh * Định nghĩa: là đường thẳng vuông góc với mặt phẳng hình chiếu cạnh П3. * Tính chất : - Hình chiếu cạnh của EF là một điểm E3 ≡ F3 - E2F2//E1F1//x - E1F1=E2F2=EF Hình 2.7. Đường thẳng chiếu cạnh Π2 x E F2 F1 ≡F3 E3 Π1 Π3 z y O F x F2 E3 z y ≡F3 E1 E2 E1 O F1 E2 III- Điểm thuộc đường thẳng 1- Đường thẳng đã cho không phải là đường cạnh Điều kiện cần và đủ để một điểm thuộc đường thẳng không phải là đường cạnh là hình chiếu đứng của điểm thuộc hình chiếu đứng của đường thẳng và hình chiếu bằng của điểm thuộc hình chiếu bằng của đường thẳng. Hình 2.8. Điểm thuộc đường thẳng A1 l1 l2 A2 A1 Π1 Π2 A x A2 l1 l2 l x 2- Đường thẳng đã cho là đường cạnh Vấn đề đặt ra: Cho đường cạnh PQ và điểm I thỏa mãn điều kiện Xét xem I có thuộc PQ hay không? (Hình 2.11) Cách 1: Dùng hình chiếu cạnh. Nếu: Hình 2.10. Cách 1. Xét điểm thuộc đường cạnh y x Q2 P3 z y Q3 P1 O P2 I1 I3 I2 Q1 Cách 2: Dựa vào tỉ số đơn của 3 điểm thẳng hàng. Nếu: Hình 2.11. Cách 2. Xét điểm thuộc đường cạnh - Qua P1 kẻ đường thẳng t bất kỳ hợp với P1Q1 một góc α tùy ý (nên lấy α<90o ). - Trên t lấy: - Vẽ x Q2 P1 P2 I1 I2 I’1 Q1 t α IV- Vết của đường thẳng Vết của đường thẳng l là giao điểm của đường thẳng đó với mặt phẳng hình chiếu (Hình 2.12) - Vết đứng: ký hiệu M, M≡ l ∩ П1 Þ M1Îl1 , M2Îx - Vết bằng: ký hiệu N, N≡ l ∩ П2 Þ N1Îx , N2Îl2 Hình 2.12. Vết của đường thẳng N1 M2 Π1 Π2 x N2 M1 l1 l2 l N1 l1 l2 x M1 N2 M2 Ví dụ: Hãy xác định vết của đường thẳng l(l1,l2) được cho như trên đồ thức và xét xem đường thẳng l đi qua góc phần tư nào trong không gian.(Hình 2.13) Hình 2.13. Ví dụ vết của đường thẳng Giải: * Tìm vết M, N của đường thẳng l: M2Îx Þ M2≡ l2∩x Þ M1Îl1 N1Îx Þ N1≡ l1∩x Þ N2Îl2 * Xét l đi qua góc phần tư nào? - Xét AÎMN: A có độ cao dương, độ xa âm Þ A thuộc góc phần tư thứ II Þ l đi qua góc phần tư thứ II. - Xét BÎMN: B có độ cao âm, độ xa âm; Þ B thuộc góc phần tư thứ III Þ l đi qua góc phần tư thứ III - Xét CÎMN : C có độ cao dương, độ xa dương; Þ C thuộc góc phần tư thứ I Þ l đi qua góc phần tư thứ I. Vậy, đường thẳng l đi qua các góc I, II, III N1 l1 l2 x M1 N2 M2 B1 B2 Góc(I) Góc (II) Góc (III) A2 A1 C2 C1 V- Vị trí tương đối giữa hai đường thẳng 1- Hai đường thẳng cắt nhau a) Cả hai đường thẳng không phải đường cạnh Điều kiện cần và đủ để hai đường thẳng không phải đường cạnh cắt nhau là trên đồ thức: các hình chiếu đứng của chúng cắt nhau, các hình chiếu bằng cắt nhau sao cho các điểm cắt này cùng nằm trên một đường dóng thẳng đứng. (Hình 2.14) Hình 2.14. Hai đường thẳng không phải là đường cạnh cắt nhau I1 a1 a2 I2 x b1 b2 b) Một trong hai đường thẳng là đường cạnh Vấn đề đặt ra: Cho đường cạnh PQ và đường thẳng l thỏa mãn: l1∩P1Q1 ≡ I1 l2∩P2Q2 ≡ I2 Xét xem l và PQ có cắt nhau không? (Hình 2.15) Giải: Ta có: IÎl Þ PQ∩l Û IÎPQ Do đó để xét xem l và PQ có cắt nhau hay không ta đưa về bài toán điểm thuộc đường cạnh đã xét ở trên Hình 2.15. Hai đường thẳng cắt nhau (một trong hai đường thẳng là đường cạnh) x Q2 P1 P2 I1 I2 I’1 Q1 t α l1 l2 2- Hai đường thẳng song song a) Định nghĩa: Hai đường thẳng song song là hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung nào. b) Điều kiện song song của hai đường thẳng trên đồ thức * Cả hai đường thẳng không phải là đường cạnh Điều kiện cần và đủ để hai đường thẳng không phải đường cạnh song song với nhau là trên đồ thức các hình chiếu đứng của chúng song song và các hình chiếu bằng của chúng cũng song song. (Hình 2.16) Hình 2.16. Hai đường thẳng song song không phải là đường cạnh a1 a2 x b1 b2 * Cả hai đường thẳng là đường cạnh Vấn đề đặt ra: Cho đường cạnh PQ và đường cạnh RS. Ta có: P1Q1//R1S1 P2Q2//R2S2 Xét xem PQ có song song với RS không? (Hình 2.17) Giải: - Cách 1: Dùng hình chiếu cạnh. Nếu: - Cách 2: Dùng định nghĩa. Xét xem PQRS có cùng mặt phẳng hay không? Hình 2.17. Xét xem hai đường cạnh có song song hay không? x Q2 P1 P2 I1 I2 Q1 S2 R2 S1 R1 3- Hai đường thẳng chéo nhau a) Định nghĩa Hai đường thẳng chéo nhau là hai đường thẳng không thuộc một mặt phẳng và không có điểm chung nào. b) Điều kiện hai đường thẳng chéo nhau trên đồ thức (Hình 2.18) Hình 2.18. Hai đường thẳng chéo nhau K1 a1 a2 I2 x b1 b2 c) Khái niệm cặp điểm đồng tia chiếu (Hình 2.19) *Cặp điểm đồng tia chiếu bằng - Cặp điểm Ia (I1a,I2a) ; Ib(I1b,I2b) gọi là cặp điểm đồng tia chiếu bằng. - I1a cao hơn I1b nên: I2a thấy, I2b khuất. *Cặp điểm đồng tia chiếu đứng -Cặp điểm Ka (K1a,K2a); Kb(K1b,K2b) gọi là cặp điểm đồng tia chiếu đứng. - K2a xa hơn K2b nên: K1a thấy, K1b khuất. Hình 2.19. Các cặp điểm đồng tia chiếu b1 a2 x a1 b2 VI- Hai đường thẳng vuông góc 1- Định lý về điều kiện một góc vuông được chiếu thành một góc vuông (Hình 2.20) - Cho mặt phẳng П và góc xOy, x’O’y’ là hình chiếu vuông góc của xOy lên mặt phẳng П. - Nếu hai trong ba điều kiện sau đây được thỏa mãn thì điều kiện còn lại được thỏa mãn: Hình 2.20. Định lý về điều kiện một góc vuông được chiếu thành một góc vuông O’ y’ O x’ x y a) П 2- Chuyển sang đồ thức - Trên đồ thức, để một góc vuông trong không gian được giữ nguyên là vuông thì một trong hai cạnh của góc phải là đường thẳng đồng mức (đường bằng, đường mặt, đường cạnh) Hình 2.21. Ví dụ 1 I1 a1 a2 I2 x h1 h2 I1 b1 b2 I2 x f1 f2 Hình 2.22. Ví dụ 2 Ví dụ 1: (Hình 2.21) Ví dụ 2: (Hình 2.22) Hình 2.23. Ví dụ 3 a1 a2 x h1 h2 b1 b2 x f1 f2 Hình 2.24. Ví dụ 4 Ví dụ 3: (Hình 2.23) (a và h chéo nhau) Ví dụ 4: (Hình 2.24) (b và f chéo nhau) Bài 3 Mặt phẳng I- Đồ thức của một mặt phẳng Trên đồ thức có 4 cách để xác định một mặt phẳng A1 l1 l2 A2 A1 A2 B1 B2 C1 C2 Hình 3.1.Đồ thức của mặt phẳng I1 b1 b2 I2 a1 a2 d1 d2 c1 c2 a) d) c) b) Chú ý: Từ cách xác định mặt phẳng này có thể chuyển đổi thành cách xác định khác. Do đó phương pháp giải bài toán không phụ thuộc vào cách cho mặt phẳng II- Vết của mặt phẳng Vết của mặt phẳng là giao tuyến của của mặt phẳng đó với các mặt phẳng hình chiếu Cho mặt phẳng (α): * Vết đứng m: m ≡ (α) ∩ П1 * Vết bằng n: n ≡ (α) ∩ П2 * Vết cạnh p: p ≡ (α) ∩ П3 Để phân biệt các mặt phẳng ta viết tên vết của mặt phẳng kèm theo tên của mặt phẳng đó. Ví dụ: Mặt phẳng (α) → -Vết đứng : mα -Vết bằng : nα -Vết cạch : pα x Π1 Π3 y Π2 p m n z x z y O m=m1 p=p3 n=n2 m2=n1=p2 p1 Hình 3.2. Vết của mặt phẳng O y mα nα pα α - Ta có thể cho mặt phẳng bởi các vết của nó. Mặt phẳng có hai vết cắt nhau tại αxÎ x (Hình 3.3a,b) hoặc mặt phẳng có vết song song với trục x (Hình 3.3c) - Thông thường người ta chỉ thể hiện vết đứng và vết bằng của mặt phẳng - Để chỉ vết đứng và vết bằng của mặt phẳng người ta có thể dùng ký hiệu m1, m2 và n1,n2 (Hình 3.3a) - Để chỉ vết đứng và vết bằng của mặt phẳng α ta kèm theo tên của mặt phẳng đó ký hiệu mα, nα (Hình 3.3b,c) x m1 n2 x mα nα αx x mα nα a) c) b) Hình 3.3. Một số cách cho mặt phẳng bằng vết trên đồ thức αx m2=n1=x Ví dụ: Xác định vết của mặt phẳng α (a,b) được cho trên đồ thức, a cắt b tại I. (Hình 3.4) Hình 3.4. Ví dụ tìm vết của một mặt phẳng αx mα a2 b1 a1 b2 M’1 M1 M’2 M2 I1 I2 N1 N2 N’1 N’2 x Giải: - Nhận xét mặt phẳng (α) đi qua a và b do đó vết của mặt phẳng (α) đi qua vết của các đường thẳng a và b. + Tìm vết đứng M(M1,M2) của đường thẳng a + Tìm vết đứng M’(M’1,M’2) của đường thẳng b mα đi qua M1, M’1 + mα ∩ x ≡ αx + Tìm vết bằng N(N1,N2) của a + Vết bằng nα đi qua αx và N2 nα Chú ý: Không cần tìm vết bằng N’(N’1 ,N’2 ) của đường thẳng b vì αx , N2 , N’2 thẳng hàng *Tính chất : -Vết bằng - - mα , x = (α) , П2 = φ (Hình 3.5) III- Các mặt phẳng có vị trí đặc biệt (đối với mặt phẳng hình chiếu) 1- Các mặt phẳng chiếu ( là các mặt phẳng vuông góc với mặt phẳng hình chiếu) a) Mặt phẳng chiếu đứng * Định nghĩa: Mặt phẳng chiếu đứng là mặt phẳng vuông góc với mặt phẳng hình chiếu đứng П1. Ví dụ: Mặt phẳng Hình 3.5. Mặt phẳng chiếu đứng Π1 x C1 C2 x A1 A2 φ C A1 C1 mα Π2 φ A B nα B1 B2 B1 mα nα α x α1 Chú ý: mα là hình chiếu đứng của mặt phẳng chiếu đứng (α) nên thường thay mα bởi α1 b) Mặt phẳng chiếu bằng * Định ngh
Tài liệu liên quan