Sự phát sinh hydrocarbure chưa cháy HC, hay nói một cách tổng quát hơn, sự hình thành các sản phẩm hữu cơ, là do quá trình cháy không hoàn toàn hoặc do một bộ phận hỗn hợp nằm ngoài khu vực lan tràn màng lửa. Điều này xảy ra do sự không đồng nhất của hỗn hợp hoặc do sự dập tắt màng lửa ở khu vực gần thành hay trong các không gian chết, nghĩa là ở khu vực có nhiệt độ thấp, khác với sự hình thành CO và NOx diễn ra trong pha đồng nhất ở những khu vực có nhiệt độ cao.
10 trang |
Chia sẻ: haohao89 | Lượt xem: 2290 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng Cơ chế hình thành hydrocarbure chưa cháy HC, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
46
4.2.5. Ảnh hưởng của hệ số khí sót
Hình 4.10 trình bày ảnh hưởng của hệ số khí sót xb đến nồng độ CO trong khí xả
động cơ Toyota. Khi tăng hệ số khí sót, nhiệt độ cháy giảm làm giảm tốc độ phản ứng
phân giải CO2 thành CO do đó nồng độ CO trong sản phẩm cháy giảm. Vì vậy, hệ thống
hồi lưu khí xả EGR lắp trên các động cơ hiện đại để khống chế nồng độ NOx đồng thời
cũng góp phần làm giảm nồng độ CO ở chế độ tải thấp.
4.3. Cơ chế hình thành hydrocarbure chưa cháy HC
4.3.1. Sự phát sinh hydrocarbure chưa cháy trong khí xả động đốt trong
Sự phát sinh hydrocarbure chưa cháy HC, hay nói một cách tổng quát hơn, sự hình
thành các sản phẩm hữu cơ, là do quá trình cháy không hoàn toàn hoặc do một bộ phận
hỗn hợp nằm ngoài khu vực lan tràn màng lửa. Điều này xảy ra do sự không đồng nhất của
hỗn hợp hoặc do sự dập tắt màng lửa ở khu vực gần thành hay trong các không gian chết,
nghĩa là ở khu vực có nhiệt độ thấp, khác với sự hình thành CO và NOx diễn ra trong pha
đồng nhất ở những khu vực có nhiệt độ cao.
Hình 4.11: Biến thiên nồng độ một số hydrocarbure
theo góc quay trục khuỷu
HC bao gồm các thành phần hydrocarbure rất khác biệt, có độc tính khác nhau đối
với sức khỏe con người cũng như có tính phản ứng khác nhau trong quá trình biến đổi hóa
học trong bầu khí quyển. Thông thường HC chứa một bộ phận lớn méthane. Thêm vào đó,
chúng còn có các thành phần chứa oxygène có tính phản ứng cao hơn như aldehyde,
cetone, phenol, alcool... Nếu thành phần chứa carbon chỉ chiếm vài phần trăm trong HC
của động cơ đánh lửa cưỡng bức thì aldehyde có thể đạt đến 10% trong HC động cơ
Diesel và trong số aldehyde này, formaldehyde chiếm tới 20% tổng số thành phần chứa
carbon.
Đánh lửa
Mở soupape xả
Đóng soupape xả
C3H8
C2H4
CH4
0 100 200 300 400
1
10
102
103
104
Độ góc quay trục khuỷu sau ĐCT
Nồng độ trong
khí xả
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
47
Những chất còn lại trong hỗn hợp sau khi màng lửa đi qua không phải là nguồn
phát sinh HC chính đo được trên đường xả của động cơ đốt trong. Hình 4.11 biểu diễn sự
biến thiên nồng độ các thành phần hydrocarbure theo góc quay trục khuỷu đo được trên
thành buồng cháy của động cơ một cylindre. Chúng ta thấy rằng, ngay khi màng lửa đi
qua, nồng độ HC đo được thấp hơn HC có mặt trong khí xả. Vào cuối chu trình, nồng độ
HC lại tăng lên. Thật vậy, khi màng lửa đã lan đến khu vực gần thành thì nó bị dập tắt và
chính HC thoát ra từ các vùng không bị cháy đóng vai trò chủ yếu trong việc làm tăng
nồng độ HC.
4.3.2. Cơ chế tôi màng lửa
Tôi màng lửa hay sự dập tắt màng lửa diễn ra khi nó tiếp xúc với thành buồng
cháy. Quá trình tôi màng lửa có thể xảy ra trong những điều kiện khác nhau: màng lửa bị
làm lạnh khi tiếp xúc với thành trong quá trình dịch chuyển hoặc màng lửa bị dập tắt trong
những không gian nhỏ liên thông với buồng cháy, chẳng hạn như khe hở giữa piston và
thành cylindre (hình 4.12).
Hình 4.12: Sự hình thành HC do tôi màng lửa
trên thành buồng cháy
Khi màng lửa bị tôi, nó giải phóng một lớp mỏng hỗn hợp chưa cháy hay cháy
không hoàn toàn trên các bề mặt tiếp xúc (culasse, piston, cylindre, soupape...) hay ở
những không gian chết.
Bề dày của vùng bị tôi phụ thuộc vào những yếu tố khác nhau: nhiệt độ và áp suất
của hỗn hợp khí, tốc độ lan tràn màng lửa, hệ số dẫn nhiệt, nhiệt dung riêng, tình trạng bề
mặt của thành buồng cháy, lớp muội than, nhiệt độ thành buồng cháy... Người ta có thể sử
dụng những công thức thực nghiệm để tính kích thước bé nhất của không gian chết để
màng lửa có thể đi qua mà không bị dập tắt.
Quá trình tôi màng lửa diễn ra theo hai giai đoạn: trong giai đoạn đầu, màng lửa bị
tắt khi nhiệt lượng hấp thụ vào thành buồng cháy cân bằng với nhiệt lượng do màng lửa
tỏa ra. Vài giây sau khi tôi, do diễn ra sự khuếch tán hay sự oxy hóa nên nồng độ HC tại
khu vực này nhỏ hơn nồng độ đo được khi tôi. Mặt khác, những hydrocarbure thoát ra
trong quá trình oxy hóa ban đầu do màng lửa bị dập tắt có thể bị oxy hóa trong quá trình
Sản phẩm
cháy
Hỗn hợp
chưa cháyVùng
màng lửa
bị kẹt
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
48
giãn nở hay thải.
Cuối cùng lớp dầu bôi trơn trên mặt gương cylindre có thể hấp thụ hydrocarbure,
nhất là các hydrocarbure trước khi bén lửa và thải HC ra hỗn hợp cháy trong kì giãn nở.
Quá trình hấp thụ và thải HC như vừa nêu đôi khi là nguồn phát sinh HC quan trọng trong
khí xả động cơ đốt trong.
4.4. Sự phát sinh HC trong quá trình cháy của động cơ
đánh lửa cưỡng bức
Khí xả động cơ xăng thường có chứa từ 1000 đến 3000ppmC, tương ứng với
khoảng từ 1 đến 2,5% lượng nhiên liệu cung cấp cho động cơ. Như đã trình bày trên hình
1.1, nồng độ HC tăng nhanh theo độ đậm đặc của hỗn hợp. Tuy nhiên, khi độ đậm đặc của
hỗn hợp quá thấp, HC cũng tăng do sự bỏ lửa hay do sự cháy không hoàn toàn diễn ra ở
một số chu trình công tác. Sự hình thành HC trong động cơ đánh lửa cưỡng bức có thể
được giải thích theo các cơ chế sau đây (hình 4.13):
- Sự tôi màng lửa khi tiếp xúc với thành tạo ra một lớp hỗn hợp không bị bén lửa
trên mặt thành buồng cháy.
- Hỗn hợp chứa trong các không gian chết không cháy được do màng lửa bị dập
tắt.
- Hơi nhiên liệu hấp thụ vào lớp dầu bôi trơn trên mặt gương cylindre trong giai
đoạn nạp và nén và thải ra trong giai đoạn giãn nở và cháy.
- Sự cháy không hoàn toàn diễn ra ở một số chu trình làm việc của động cơ (cháy
cục bộ hay bỏ lửa) do sự thay đổi độ đậm đặc, thay đổi góc đánh lửa sớm hay hồi lưu khí
xả, đặc biệt khi gia giảm tốc độ.
Mặt khác, muội than trong buồng cháy cũng có thể gây ra sự gia tăng mức độ phát
sinh ô nhiễm do sự thay đổi các cơ chế trên đây. Tất cả những quá trình này (trừ trường
hợp bỏ lửa) làm gia tăng nồng độ HC chưa cháy ở gần thành buồng cháy chứ không phải
trong toàn bộ thể tích buồng cháy. Trong quá trình thải có thể xuất hiện hai đỉnh cực đại
của nồng độ HC: đỉnh thứ nhất tương ứng với đại bộ phận HC sinh ra trong quá trình cháy
chính, đỉnh thứ hai xuất hiện vào cuối kì thải ở thời điểm những bộ phận HC cuối cùng
thoát ra khỏi cylindre trong điều kiện lưu lượng khí xả đã giảm.
Lớp dầu bôi
trơn hấp thụ
HC
Lớp muội than
hấp thụ HC
Hỗn hợp chưa
cháy bị nén
vào không
gian chết
Màng lửa
Hỗn hợp cháy
không hoàn
toàn là nguồn
phát sinh HC
HC trên thành
cylindre bị
kéo theo dòng
khí xả
Lớp muội than
giải phóng HC
NÉN
CHÁY
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
49
Hình 4.13: Sơ đồ các nguồn phát sinh HC
4.4.1. Tôi màng lửa trên thành buồng cháy
Bề dày của lớp bị tôi thay đổi từ 0,05 đến 0,4mm phụ thuộc vào chế độ tải của
động cơ. Khi tải càng thấp thì lớp bị tôi càng dày. Sự hiện diện của aldehyde dạng HCHO
hay CH3CHO trong lớp tôi chứng tỏ rằng khu vực lớp tôi là nơi diễn ra các phản ứng oxy
hóa ở nhiệt độ thấp. Sau khi màng lửa bị dập tắt, những phần tử HC có mặt trong lớp tôi
khuếch tán vào khối khí nhiệt độ cao trong buồng cháy và đại bộ phận bị oxy hóa.
Trạng thái bề mặt của thành buồng cháy cũng ảnh hưởng đến mức độ phát sinh
HC: nồng độ HC có thể giảm đi 14% trong trường hợp thành buồng cháy được đánh bóng
so với trường hợp thành buồng cháy ở dạng đúc thô. Lớp muội than gây ảnh hưởng đến
nồng độ HC tương tự như trường hợp thành buồng cháy nhám.
4.4.2. Ảnh hưởng của các không gian chết
Các không gian này được xem là nguyên nhân chủ yếu phát sinh HC. Các không
gian chết quan trọng nhất là các khe hở giới hạn giữa piston, segment và cylindre (hình
4.15). Những không gian chết khác bao gồm chân ren và không gian quanh cực trung tâm
của bougie, không gian quanh nấm và đế soupape, không gian giới hạn giữa nắp cylindre,
thân máy và đệm culasse. Ở thời điểm gia tăng áp suất trong quá trình nén, hỗn hợp nhiên
liệu-không khí bị đẩy vào các không gian chết. Do tỉ số giữa diện tích bề mặt và thể tích
của các không gian chết lớn nên lượng khí dồn vào đây được làm mát nhanh chóng. Trong
giai đoạn cháy, áp suất tiếp tục tăng và một bộ phận hỗn hợp mới lại được nén vào không
gian chết. Khi màng lửa lan đến các khu vực này, nó có thể lan tràn vào bên trong để đốt
cháy hỗn hợp này hoặc nó bị tôi ngay trước khi vào trong không gian chết. Khả năng
màng lửa bị tôi phụ thuộc vào dạng hình học của lối vào không gian chết, thành phần của
hỗn hợp chưa cháy và trạng thái nhiệt động học của nó. Thực nghiệm cho thấy sự tôi màng
lửa diễn ra khi khe hở giữa piston và cylindre nhỏ hơn 0,18mm. Sau khi màng lửa đến và
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
50
bị tôi, khí cháy lại chui vào không gian chết cho đến khi áp suất bắt đầu giảm. Khi áp suất
trong không gian chết trở nên lớn hơn áp suất trong cylindre, bộ phận khí chứa trong các
không gian này quay trở ngược lại cylindre.
Hình 4.15 thể hiện những không gian chết quan trọng nhất, đó là thể tích bao gồm
giữa piston, segment và thành cylindre. Nó bao gồm một loạt các thể tích nối liền nhau bởi
những khe hẹp như khe hở segment, không gian giới hạn giữa hai segment liên tiếp...
Dạng hình học của các không gian chết này thay đổi khi segment dịch chuyển trong rãnh
để che kín mặt trên hay mặt dưới rãnh segment. Các không gian chết vừa nêu có thể chứa
từ 5 đến 10% hỗn hợp trong cylindre và bộ phận hỗn hợp này không cháy được trong quá
trình cháy chính. Trong giai đoạn giãn nở, khi quay ngược lại cylindre, một bộ phận HC
chứa trong không gian chết bị oxy hóa, phần còn lại (hơn 50%) thoát ra ngoài theo khí xả.
Thực nghiệm cho thấy hơn 80% HC chứa trong sản phẩm cháy do các không gian chết của
nhóm piston-segment-cylindre gây ra; 13% lượng HC do không gian chết của đệm culasse
2% do không gian chết của bougie. Giảm khoảng cách giữa segment thứ nhất so với đỉnh
piston có thể làm giảm nồng độ HC từ 47 đến 74% so với giá trị bình thường tùy theo điều
kiện làm việc của động cơ.
Vị trí của nến đánh lửa cũng ảnh hưởng đến mức độ phát sinh HC; nếu nến đánh
lửa đặt gần các không gian chết thì trong không gian đó có chứa một bộ phận sản phẩm
cháy; ngược lại, nếu nến đánh lửa đặt xa thì không gian chết chứa chủ yếu hỗn hợp khí
chưa cháy. Trong nhiều trường hợp, sự chênh lệch nồng độ HC có thể đạt đến 20%.
Lọt khí carter là lượng khí lọt từ cylindre xuống carter trong quá trình nén và cháy
do sự không kín khít của segment. Lọt khí carter cũng là nguồn phát sinh HC nếu nó được
thải trực tiếp ra khí quyển. Ngày nay, ở hầu hết động cơ ô tô, lượng khí này được dẫn vào
đường nạp để tăng tính kinh tế và giảm mức độ phát sinh HC. Để lượng hỗn hợp chưa
cháy chứa trong các không gian chết không quay ngược lại buồng cháy, trong một số
trường hợp người ta có thể giảm độ kín khít của segment để lượng khí này lọt xuống carter
và bị đốt cháy khi quay vào lại cylindre theo đường nạp.
Hình 4.15: Nguồn phát sinh HC trong động cơ đánh lửa cưỡng bức
Không gian chết
giữa đế và nấm
soupape
Không gian chết
ở chân ren
bougie
Không gian chết
ở đệm culasse
Không gian chết
giữa segment và
rãnh segment
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
51
Vì vậy, việc thiết kế hợp lí buồng cháy, lựa chọn hợp lí dạng piston, segment, đệm
culasse để giảm các không gian chết, lựa chọn vị trí đặt bougie tốt sẽ làm giảm đáng kể
nồng độ HC trong khí xả.
4.4.3. Sự hấp thụ và giải phóng HC ở màng dầu bôi trơn
Pha dầu bôi trơn vào nhiên liệu, như trường hợp động cơ 2 kì, sẽ làm gia tăng mức
độ phát sinh HC. Khi pha thêm 5% dầu bôi trơn vào nhiên liệu thì nồng độ HC trong khí
xả có thể tăng gấp đôi hay gấp ba so với trường hợp động cơ làm việc với nhiên nhiên
không pha dầu bôi trơn.
Cơ chế làm tăng HC khi pha dầu bôi trơn vào nhiên liệu có thể giải thích như sau.
Trong giai đoạn nạp, màng dầu bôi trơn được tráng trên mặt gương cylindre ở trạng thái
bão hòa hơi hydrocarbon ở áp suất nạp. Khi cháy hết nhiên liệu, sự giải phóng hơi nhiên
liệu từ màng dầu bôi trơn vào khí cháy bắt đầu và đồng thời quá trình này tiếp tục trong kì
giãn nở và thải. Trong quá trình đó, một bộ phận hơi này sẽ hòa trộn với khí cháy ở nhiệt
độ cao và bị oxy hóa; một bộ phận khác hòa trộn với hỗn hợp khí cháy nhiệt độ thấp,
không bị oxy hóa, góp phần làm tăng HC. Luợng HC này tăng theo độ hòa tan của nhiên
liệu trong dầu bôi trơn.
Sự hiện diện của muội than trong buồng cháy cũng ảnh hưởng đến sự phát sinh
HC. Thực tế cho thấy HC có khuynh hướng gia tăng theo mức độ tiêu thụ dầu bôi trơn. Vì
vậy, lựa chọn dạng segment dầu hợp lý sẽ làm giảm mức độ tiêu thụ dầu bôi trơn đồng
thời làm giảm mức độ phát sinh HC.
4.4.4. Ảnh hưởng của chất lượng quá trình cháy
Sự dập tắt màng lửa khi nó lan đến gần thành là một trong những nguyên nhân làm
gia tăng HC trong khí xả động cơ. Màng lửa có thể bị tắt khi áp suất và nhiệt độ giảm
xuống nhanh. Hiện tượng này diễn ra ở chế độ không tải hay tải nhỏ và tốc độ thấp với
thành phần khí sót cao. Ngay cả khi động cơ được điều chỉnh tốt ở chế độ làm việc bình
thường, sự dập tắt màng lửa cũng diễn ra ở chế độ quá độ (gia tốc hay giảm tốc).
4.4.5. Ảnh hưởng của lớp muội than
Sự hình thành lớp muội than (oxyde chì đối với động cơ sử dụng nhiên liệu pha chì
hay là lớp than do dầu bôi trơn bị cháy) xuất hiện trong buồng cháy khi ô tô chạy được
khoảng vài ngàn cây số, cũng góp phần làm gia tăng HC.
Cơ chế làm tăng HC do sự hiện diện của muội than khá phức tạp. Sự hấp thụ và
giải phóng HC ở lớp muội than cũng giống như màng dầu. Mặt khác, nếu kích thước ban
đầu của các không gian chết hẹp, lớp bồ hóng làm giảm lượng hỗn hợp khí chưa cháy
chứa trong các không gian này vì vậy làm giảm HC. Ngược lại, nếu các không gian này
nguyên thủy đủ lớn, sự bám bồ hóng làm giảm tiết diện lối vào, tăng khả năng dập tắt
màng lửa do đó làm tăng mức độ phát sinh HC.
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
52
4.4.6. Ảnh hưởng của sự oxy hóa HC trong kì giãn nở và thải
Lượng hydrocarbure không tham gia vào quá trình cháy chính trong thực tế lớn
hơn nhiều so với lượng hydrocarbure đo được trong khí xả động cơ. Thật vậy, sau khi
thoát ra khỏi các không gian chết, nhiên liệu chưa cháy khuếch tán vào khối sản phẩm
cháy ở nhiệt độ cao và tại đây chúng bị oxy hóa một cách nhanh chóng. Sự oxy hóa này
càng thuận lợi khi lượng oxy trong sản vật cháy càng nhiều (hỗn hợp nghèo).
Hydrocarbure ở thể khí bị oxy hóa khi nó tồn tại trong môi trường có nhiệt độ khoảng
600°C (nhiệt độ thông thường của nấm soupape xả) ít nhất là 50ms. Lượng HC thải ra bao
gồm nhiên liệu chưa cháy hết và các sản phẩm cháy không hoàn toàn. Mặt khác, quá trình
oxy hóa cũng tiếp tục diễn ra trên đường xả làm giảm thêm nồng độ HC sau khi chúng
thoát ra khỏi buồng cháy. Vì vậy những điều kiện vận hành của động cơ làm gia tăng nhiệt
độ khí xả (hỗn hợp có độ đậm đặc xấp xỉ 1, động cơ làm việc với tốc độ cao, đánh lửa
muộn, tỉ số nén cao...) và thời gian tồn tại của hỗn hợp trong buồng cháy dài (tải thấp) sẽ
làm gia tăng tỉ lệ HC bị oxy hóa. Giảm góc đánh lửa sớm làm tăng nhiệt độ hỗn hợp khí ở
cuối quá trình giãn nở tạo điều kiện thuận lợi cho việc oxy hóa HC trên đường thải. Về
mặt kỹ thuật, để tăng khả năng oxy hóa HC trên đường thải cần làm giảm tổn thất nhiệt ở
soupape và cổ góp bằng cách gia tăng tiết diện lưu thông và cách nhiệt đoạn đầu đường
thải, chẳng hạn như phủ một lớp vật liệu gốm trên thành ống.
4.5. Trường hợp động cơ Diesel
4.5.1. Đặc điểm phát sinh HC trong quá trình cháy động cơ Diesel
Do nguyên lí làm việc của động cơ Diesel, thời gian lưu lại của nhiên liệu trong
buồng cháy ngắn hơn trong động cơ đánh lửa cưỡng bức nên thời gian dành cho việc hình
thành sản phẩm cháy không hoàn toàn cũng rút ngắn làm giảm thành phần hydrocarbure
cháy không hoàn toàn trong khí xả.
Do nhiên liệu Diesel chứa hydrocarbure có điểm sôi cao, nghĩa là khối lượng phân
tử cao, sự phân hủy nhiệt diễn ra ngay từ lúc phun nhiên liệu. Điều này là tăng tính phức
tạp của thành phần hydrocarbure cháy không hoàn toàn trong khí xả.
Quá trình cháy trong động cơ Diesel là một quá trình phức tạp, trong quá trình đó
diễn ra đồng thời sự bay hơi nhiên liệu và hòa trộn nhiên liệu với không khí và sản phẩm
cháy. Khi độ đậm đặc trung bình của hỗn hợp quá lớn hoặc quá bé đều làm giảm khả năng
tự cháy và lan tràn màng lửa. Trong trường hợp đó nhiên liệu sẽ được tiêu thụ từng phần
trong những phản ứng oxy hóa diễn ra chậm ở giai đoạn giãn nở sau khi hòa trộn thêm
không khí.
Chúng ta có thể chia ra hai khu vực đối với bộ phận nhiên liệu được phun vào
buồng cháy trong giai đoạn cháy trễ: khu vực hỗn hợp quá nghèo do pha trộn với không
khí quá nhanh và khu vực hỗn hợp quá giàu do pha trộn với không khí quá chậm. Trong
trường hợp đó, chủ yếu là khu vực hỗn hợp quá nghèo diễn ra sự cháy không hoàn toàn
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
53
còn khu vực hỗn hợp quá giàu sẽ tiếp tục cháy khi hòa trộn thêm không khí.
Đối với bộ phận nhiên liệu phun sau giai đoạn cháy trễ, sự oxy hóa nhiên liệu hay
các sản phẩm phân hủy nhiệt diễn ra nhanh chóng khi chúng dịch chuyển trong khối khí ở
nhiệt độ cao. Tuy nhiên sự hòa trộn không đồng đều có thể làm cho hỗn hợp quá giàu cục
bộ hay dẫn đến sự làm mát đột ngột làm tắt màng lửa, sinh ra các sản phẩm cháy không
hoàn toàn trong khí xả.
Mức độ phát sinh HC trong động cơ Diesel phụ thuộc nhiều vào điều kiện vận
hành; ở chế độ không tải hay tải thấp, nồng độ HC cao hơn ở chế độ đầy tải. Thêm vào đó,
khi thay đổi tải đột ngột có thể gây ra sự thay đổi mạnh các điều kiện cháy dẫn đến sự gia
tăng HC do những chu trình bỏ lửa.
Cuối cùng, khác với động cơ đánh lửa cưỡng bức, không gian chết trong động cơ
Diesel không gây ảnh hưởng quan trọng đến nồng độ HC trong khí xả vì trong quá trình
nén và giai đoạn đầu của quá trình cháy, các không gian chết chỉ chứa không khí và khí
sót. Ảnh hưởng của lớp dầu bôi trơn trên mặt gương cylindre, ảnh hưởng của lớp muội
than trên thành buồng cháy cũng như ảnh hưởng của sự tôi màng lửa đối với sự hình thành
HC trong động cơ Diesel cũng không đáng kể so với trường hợp động cơ đánh lửa cưỡng
bức.
4.5.2. Phát sinh HC trong trường hợp hỗn hợp quá nghèo
Sự phân bố không đồng đều nhiên liệu trong cylindre ngay lúc bắt đầu phun được
giới thiệu trên hình 4.16. Trong dòng xoáy lốc, sự tự cháy diễn ra trong khu vực có độ
đậm đặc hơi thấp hơn 1. Bộ phận nhiên liệu ở ngoài rìa tia nằm ngoài giới hạn dưới của sự
tự bén lửa do đó chúng không thể tự cháy cũng không thể duy trì màng lửa. Khu vực đó
chỉ có thể là vị trí sản sinh các phản ứng chậm dẫn đến sản phẩm cháy không hoàn toàn.
Do đó trong vùng này có mặt nhiên liệu chưa cháy hết, những sản vật phân giải từ nhiên
liệu, những sản phẩm oxy hóa cục bộ (CO, aldehyde và những oxyde khác) và một bộ
phận của những sản phẩm này có mặt trong khí xả. Tầm quan trọng của những
hydrocarbure chưa cháy từ những khu vực nghèo này phụ thuộc vào lượng nhiên liệu phun
vào động cơ trong thời kì cháy trễ, phụ thuộc vào tỉ lệ không khí kéo theo vào tia trong
giai đoạn này và những điều kiện lí hóa ảnh hưởng đến sự tự cháy trong cylindre.
Vòi phun
Không khí
xoáy lốc
Giới hạn tia
nhiên liệu
Điểm đánh
lửa
HC trong vùng
hỗn hợp quá
nghèo
f >1
f = 0
f = fL
f =1
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
54
Hình 4.16: Phân bố độ đậm đặc trong tia phun Diesel
Vì vậy nồng độ HC trong khí xả và độ dài của giai đoạn cháy trễ có quan hệ mật
thiết với nhau, hay nói cách khác mức độ phát sinh HC có liên quan đến chỉ số cetane của
nhiên liệu. N