Bài giảng Kinh tế quốc tế - Chương 7: Kiểm định tham số

I.MỘT SỐ KHÁI NIỆM 1.1. Các loại giả thuyết trong thống kê: a) Giả thuyết H0: Gọi  là một đặc chưa biết của tổng thể. Ta xây dựng giả thuyết  so sánh với 0 nào đó. b) Giả thuyết H1: là kết quả ngược lại của giả thuyết H0

pdf20 trang | Chia sẻ: thanhtuan.68 | Lượt xem: 1105 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng Kinh tế quốc tế - Chương 7: Kiểm định tham số, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chương 7: KIỂM ĐỊNH THAM SỐ www.nguyenngoclam.com 132 I.MỘT SỐ KHÁI NIỆM 1.1. Các loại giả thuyết trong thống kê: a) Giả thuyết H0: Gọi  là một đặc chưa biết của tổng thể. Ta xây dựng giả thuyết  so sánh với 0 nào đó. b) Giả thuyết H1: là kết quả ngược lại của giả thuyết H0      01 00 :H :H      01 00 :H :H      01 00 :H :H Hai đuôi Một đuôi phải Một đuôi trái 1.2. Các loại sai lầm trong kiểm định giả thuyết: • Sai lầm loại 1: Bác bỏ giả thuyết đúng. • Sai lầm loại 2: Chấp nhận một giả thuyết sai. 133 II.KIỂM ĐỊNH TRUNG BÌNH 2.1. Đã biết 2: X~N / n≥30. Kiểm định z Đuôi phải Đuôi trái Hai đuôi Giả thuyết Giá trị kiểm định Bác bỏ H0 Z > Z Z Z /2; Z < -Z /2      01 00 :H :H      01 00 :H :H      01 00 :H :H n x z 0    • Bác bỏ giả thuyết 1 đuôi: |z | > z • Bác bỏ giả thuyết 2 đuôi: |z | > z/2 134 II.KIỂM ĐỊNH TRUNG BÌNH 2.2. Chưa biết 2: • n ≥ 30: Như trường hợp trên thay  bằng s. • n < 30: X~N. Kiểm định t bậc n-1: Đuôi phải Đuôi trái Hai đuôi Giả thuyết Giá trị kiểm định Bác bỏ H0 t > tn-1, t tn-1, /2;t < -tn-1, /2      01 00 :H :H      01 00 :H :H      01 00 :H :H n s x t 0   135 II.KIỂM ĐỊNH TRUNG BÌNH Ví dụ: Một hãng sản xuất vỏ xe quảng cáo rằng sản phẩm X của hãng có thể sử dụng không dưới 100.000km. Một công ty vận tải mua 60 sản phẩm X, sau một thời gian sử dụng kết quả cho thấy độ bền trung bình là 97.500km và độ lệch chuẩn là 12.000km. Với mức ý nghĩa 10%, có nhận xét gì về lời quảng cáo? z = -1,61 136 II.KIỂM ĐỊNH TRUNG BÌNH 2.3. Giá trị p của kiểm định: >p => H0 bị bác bỏ * Cách tìm p trong kiểm định Z: Kiểm định một đuôi : p = 0,5 - (z) Kiểm định hai đuôi : p = 2(0,5 - (z)) * Sử dụng Excel: • p trong kiểm định z : 1-NORMSDIST(z) • p trong kiểm định 2 : CHIDIST(2.df) • p trong kiểm định t : TDIST(t.df.Tails) • p trong kiểm định F : FDIST(F.df1.df2) 137 II.KIỂM ĐỊNH TRUNG BÌNH Nhận xét giá trị p: • Nếu p quá nhỏ (p~0): Bác bỏ H0 hoàn toàn • Nếu p quá lớn (p>10%): Chấp nhận H0 hoàn toàn 138 III.KIỂM ĐỊNH TỶ LỆ H0: p p0 n ≥ 40, kiểm định z với: n )p1(p pp z 00 0x ^    Ví dụ: Phỏng vấn ngẫu nhiên 250 khách du lịch nước ngoài thì thấy có 72 người đã từng du lịch đến Việt Nam trước đó. Có ý kiến cho rằng nhiều nhất là ¼ khách du lịch trở lại Việt Nam những lần sau. Dựa vào mẫu phỏng vấn, có nhận xét gì về ý kiến này, với mức ý nghĩa 5%? Tìm giá trị p? z = 1,39 139 III.KIỂM ĐỊNH PHƯƠNG SAI Đuôi phải Đuôi trái Hai đuôi Giả thuyết Giá trị kiểm định Bác bỏ H0 2 > 2n-1,  2 < 2n-1,1-  2 > 2n-1, /2; 2 < 2n-1,1- /2      2 0 2 1 2 0 2 0 :H :H      2 0 2 1 2 0 2 0 :H :H      2 0 2 1 2 0 2 0 :H :H 2 0 2 x2 1n S).1n(     140 III.KIỂM ĐỊNH PHƯƠNG SAI Ví dụ: Quá trình sản xuất còn được xem là tốt và chi tiết sản phẩm sản xuất ra được chấp nhận nếu phương sai của đường kính tối đa không quá 1, nếu phương sai vượt quá 1, phải xem xét lại máy móc và sửa chữa. Với mẫu ngẫu nhiên 31 chiết tiết, phương sai đường kính tính được là 1,62. Ở mức ý nghĩa 0,05, ta có thể kết luận như thế nào về quá trình sản xuất? 141 IV.KIỂM ĐỊNH 2 PHƯƠNG SAI Chọn 2 mẫu ngẫu nhiên độc lập có nX, nY quan sát từ 2 tổng thể X,Y - chuẩn. Giả sử Sx 2 > SY 2, ta có giả thuyết:       2 y 2 x1 2 y 2 x0 :H :H  ;1n;1n2 y 2 x yx F S S F Ví dụ: Công ty sản xuất vỏ xe muốn kiểm tra giả thuyết phải chăng độ đồng đều về chất lượng võ xe (thể hiện ở km sử dụng) sản xuất ở ngày cuối tuần thấp hơn so với ngày đầu tuần. Mẫu 7 võ xe được sản xuất vào ngày thứ 2 và 9 võ xe sản xuất vào ngày thứ 7, với phương sai về km sử dụng tính được lần lượt là 9,0317 và 13,036. Ở mức ý nghĩa 1%, có thể kết luận như thế nào về giả thuyết nói trên? Bác bỏ H0 F=1,44 142 V.KIỂM ĐỊNH 2 TRUNG BÌNH H0: X - Y D0 5.1. Mẫu phối hợp từng cặp: Chọn ngẫu nhiên n cặp quan sát (xi,yi) X,Y - chuẩn. Ta có kiểm định tn-1, giá trị cho trước D0: Ví dụ: Để đánh giá hiệu quả hoạt động SXKD của các DN sau cổ phần hóa. Tỷ lệ lãi trên vốn (%) trước và sau CPH của mẫu gồm 15 DN được ghi nhận. Với mức ý nghĩa 5%, hãy xem xét về tính hiệu quả của CPH. (Sự khác biệt có phân phối chuẩn) n S Dd t d 0 143 V.KIỂM ĐỊNH 2 TRUNG BÌNH DN Trước CPH Sau CPH DN Trước CPH Sau CPH 1 3,5 4,0 9 4,5 5,0 2 5,1 4,8 10 5,0 5,4 3 4,0 6 11 6,0 6,5 4 4,2 6,8 12 4,0 5,0 5 5,0 5,2 13 5,0 5,6 6 6,0 6,4 14 6,0 6,2 7 5,8 6,0 15 5,4 6,5 8 6,0 5,0 144 V.KIỂM ĐỊNH 2 TRUNG BÌNH 5.2. Mẫu độc lập: a) Đã biết 2 : (X,Y-chuẩn hoặc nx, ny  30): y 2 y x 2 x 0 nn D)yx( z     b). Chưa biết 2 và x 2 ≠ x 2: • nx, ny  30: Như trên thay  bằng s • nx/ny < 30): X,Y~N, kiểm định tn y 2 y x 2 x 0 n s n s D)yx( t    1n )ns( 1n )ns( )nsns( n y 2 y 2 y x 2 x 2 x 2 y 2 yx 2 x      145 V.KIỂM ĐỊNH 2 TRUNG BÌNH b). Chưa biết 2, x 2 = y 2: X,Y~N, KĐ tnx+ny-2: ) n 1 n 1 (S D)yx( t yx 2 0    2nn S).1n(S).1n( S yx 2 yy 2 xx2    Ví dụ: Một hãng viễn thông muốn kiểm tra xem có sự khác biệt hay không về cước phí điện thoại di động của khách hàng nam và nữ. Chọn ngẫu nhiên 50 khách hàng nam, 60 khách hàng nữ và tính toán được như sau: Chi phí trung bình của nam là 45.200đ/tuần, độ lệch chuẩn là 7.000đ, tương tự đối với nữ là 42.400đ/tuần, 8.900đ. Kết quả điều tra cho ta nhận xét gì với mức ý nghĩa 10%. Z = -1,85 146 V.KIỂM ĐỊNH 2 TRUNG BÌNH 147 V.KIỂM ĐỊNH 2 TRUNG BÌNH t-Test: Paired Two Sample for Means X Y Mean 5,03 5,63 Variance 0,71 0,63 Observations 15 15 Pearson Correlation 0,45 Hypothesized Mean Difference 0 df 14 t Stat -2,675 P(T<=t) one-tail 0,009 t Critical one-tail 1,761 P(T<=t) two-tail 0,018 t Critical two-tail 2,145 148 VI.KIỂM ĐỊNH 2 TỶ LỆ H0: px – py p0 Điều kiện: nx, ny  40 6.1. Giá trị cần kiểm định p0=0 ) n 1 n 1 )(pˆ1(pˆ )pˆpˆ( z yx yx    yx yyxx nn pˆnpˆn pˆ    6.2. Giá trị cần kiểm định p0≠0 y yy x xx 0yx n )pˆ1(pˆ n )pˆ1(pˆ p)pˆpˆ( z      149 VI.KIỂM ĐỊNH 2 TỶ LỆ Ví dụ: Một công ty nước giải khát đang nghiên cứu việc đưa vào một công thức mới để cải tiến sản phẩm của mình. Với công thức cũ, khi cho 500 người dùng thử thì có 120 người tỏ ra ưa thích nó. Với công thức mới, khi cho 1.000 người khác dùng thử thì có 300 người tỏ ra ưa thích nó. Hãy kiểm định xem công thức mới đưa vào có làm tăng tỷ lệ những người ưa thích nước giải khát hay không? với mức ý nghĩa 5% Z = -2,44 www.nguyenngoclam.com
Tài liệu liên quan