Bài giảng Xử lý ảnh - Chương 12: Mạng thần kinh nhân tạo cho lớp phân màu sắc
Không nghi ngờ gì nữa, con người là cách tốt nhất để phân loại màu sắc. Tuy nhiên, các ứng dụng đòi hỏi sự phân loại màu trực tuyến và sửa lại tín hiệu sắc màu một cách có lựa chọn như trong tín hiệu truyền hình màu, thay thế cho sự phân lớp của con người là cần phải có. May mắn thay, một nhóm các kiểu phân loại được mô hình hoá theo kiểu trí tuệ sinh vật (hệ thống thần kinh nhân tạo) đã được phát triển và nghiên cứu trong một thời gian dài. Mục tiêu của các nghiên cứu này là đạt được tới mức giống như con người. Chúng ta chưa đạt được mục tiêu này. Sự thách thức là chúng ta phải hiểu được bằng cách nào mà một loạt các tác động thần kinh đem lại cho chúng ta khả năng nhìn, nghe, cảm giác, chuyển động. Mặc dù chúng ta đã có những hiểu biết đúng đắn cấu tạo của tổ chức bộ não con người, chúng ta vẫn không hiểu một cách đầy đủ bằng cách nào mà con người có thể có một loạt các chức năng như vậy. Khả năng học hỏi và thích nghi của con người vẫn còn là một điều bí ẩn. Một trích dẫn rất đáng quan tâm, "Tôi đã để lại các dấu hiệu như một bằng chứng về sự tồn tại của tôi, cái nào trong số các dấu hiệu này bạn phản đối? Tôi đã tạo ra con người, tôi đã dạy [lập trình] cho họ có khả năng nhận biết." (Kinh Coran, Suret Al-Rahman). Con người nhận ra họ có khả năng phát minh ra các công cụ ngay từ khi họ mới được tạo ra. Phần lớn các sáng tạo của con người đều dựa trên ham muốn tìm hiểu trong lĩnh vực vật lý. Bằng tất cả các khám phá, con người lại quay trở về để tìm hiểu chính bản thân mình. Cùng với sự ra đời của phần mềm, tự động hoá, phỏng sinh học ta đã có thể mô phỏng một số chức năng của con người qua các phần cứng và phần mềm mô phỏng. Giống như khi bắt đầu, hệ thống thần kinh nhân tạo vẫn chưa mô phỏng được dạng thức con người; tuy nhiên, các cấu trúc này có rất nhiều ứng dụng hữu ích. Một trong những ứng dụng sẽ trình bày ở phần dưới đây là phân lớp màu sắc. Trong chương này chúng ta sẽ xem xét một loạt các mô hình thần kinh nhân tạo, cách thức nhận thức của chúng, và hiệu quả trong phân lớp màu.