16.1. GIỚI THIỆU
Trong lịch sử, lĩnh vực hoạt động rộng lớn của xử lý ảnh số đã dành hết cho việc
khôi phục ảnh. Công việc này bao gồm cả nghiên cứu phát triển thuật giải lẫn
chương trình, xử lý ảnh có mục đích. Nhiều đóng góp đáng chú ý trong xử lý ảnh số
đã được thực hiện trước kia cũng như sau này.
Dựa vào khôi phục ảnh, chúng ta muốn loại bỏ hay làm giảm những suy giảm gặp
phải trong khi thu nhận ảnh số. Sự suy giảm bao gồm sự mờ do hệ thống quang học,
di chuyển đối tượng và cả nhiễu từ điện tử hay nguồn quang trắc. Trong khi khôi
phục ảnh có thể được định nghĩa bao gồm nhiều kỹ thuật đã đề cập trong Phần 1, ta
coi nó là biểu hiện của lớp các thao tác bị hạn chế nhiều hơn.
Tiêu chí cho việc khôi phục ảnh là mang lại một ảnh tương đối giống ảnh ban đầu
khi ảnh số thu được bị suy giảm. Mỗi phần tử trong chuỗi thu nhận ảnh (thấu kính,
film, bộ số hoá,.) đều có thể tạo ra suy giảm. Khôi phục từng phần ảnh bị mất chất
lượng có thể thoả mãn một khía cạnh thẩm mỹ nào đó, tuỳ thuộc vào từng ứng dụng
cụ thể. Một ví dụ cho trường hợp sau là các nhiệm vụ thu thập ảnh mặt trăng và hành
tinh trong chương trình không gian.
Trong chương này, chúng ta xem xét một vài phương pháp tiếp cận khôi phục
ảnh. Ta cũng xem xét các bài toán nhận biết hệ thống và mô phỏng nhiễu. Đối với
những tin tức chi tiết về các đối tượng, độc giả nên tham khảo tài liệu hay nghiên cứu
về lĩnh vực này.
                
              
                                            
                                
            
                       
            
                 38 trang
38 trang | 
Chia sẻ: thanhle95 | Lượt xem: 861 | Lượt tải: 0 
              
            Bạn đang xem trước 20 trang tài liệu Bài giảng Xử lý ảnh - Chương 16: Khôi phục ảnh, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
 312 
Ch¬ng 16 
KHÔI PHỤC ẢNH 
16.1. GIỚI THIỆU 
Trong lịch sử, lĩnh vực hoạt động rộng lớn của xử lý ảnh số đã dành hết cho việc 
khôi phục ảnh. Công việc này bao gồm cả nghiên cứu phát triển thuật giải lẫn 
chương trình, xử lý ảnh có mục đích. Nhiều đóng góp đáng chú ý trong xử lý ảnh số 
đã được thực hiện trước kia cũng như sau này. 
Dựa vào khôi phục ảnh, chúng ta muốn loại bỏ hay làm giảm những suy giảm gặp 
phải trong khi thu nhận ảnh số. Sự suy giảm bao gồm sự mờ do hệ thống quang học, 
di chuyển đối tượng và cả nhiễu từ điện tử hay nguồn quang trắc. Trong khi khôi 
phục ảnh có thể được định nghĩa bao gồm nhiều kỹ thuật đã đề cập trong Phần 1, ta 
coi nó là biểu hiện của lớp các thao tác bị hạn chế nhiều hơn. 
Tiêu chí cho việc khôi phục ảnh là mang lại một ảnh tương đối giống ảnh ban đầu 
khi ảnh số thu được bị suy giảm. Mỗi phần tử trong chuỗi thu nhận ảnh (thấu kính, 
film, bộ số hoá,...) đều có thể tạo ra suy giảm. Khôi phục từng phần ảnh bị mất chất 
lượng có thể thoả mãn một khía cạnh thẩm mỹ nào đó, tuỳ thuộc vào từng ứng dụng 
cụ thể. Một ví dụ cho trường hợp sau là các nhiệm vụ thu thập ảnh mặt trăng và hành 
tinh trong chương trình không gian. 
Trong chương này, chúng ta xem xét một vài phương pháp tiếp cận khôi phục 
ảnh. Ta cũng xem xét các bài toán nhận biết hệ thống và mô phỏng nhiễu. Đối với 
những tin tức chi tiết về các đối tượng, độc giả nên tham khảo tài liệu hay nghiên cứu 
về lĩnh vực này. 
16.1.1. Tiếp cận và mô phỏng 
Tiến trình khôi phục ảnh bị suy giảm có thể tiếp cận theo một trong hai cách cơ 
bản. Nếu không biết nhiều về ảnh, ta có thể cố gắng để mô phỏng và mô tả đặc điểm 
các nguồn suy giảm (mờ và nhiễu) và thực hiện quá trình loại bỏ và giảm bớt ảnh 
hưởng của chúng. Đây là cách tiếp cận ước đoán, vì ta thử ước đoán ảnh như thế nào 
trước khi bị suy giảm thông qua xử lý các đặc tính liên quan còn lại. 
Nói cách khác, rất nhiều nhận thức trước đây về ảnh đã có sẵn, có thể thành công 
hơn để phát triển mô hình toán học của ảnh ban đầu và điều chỉnh mô hình ảnh quan 
sát. Một ví dụ cho trường hợp này, giả sử rằng ảnh đã biết chỉ chứa các đối tượng 
hình tròn có kích thước cố định (các vì sao, các hạt, các tế bào,). Ở đây, công việc 
là sự phát hiện, vì chỉ một vài thông số của ảnh ban đầu là chưa biết (số lượng, vị trí, 
biên độ,). 
Việc tiếp cận bài toán khôi phục ảnh cũng thể hiện ở một vài lựa chọn khác. Thứ 
nhất, việc phát triển có thể sử dụng các phép toán rời rạc hay liên tục. Thứ hai, việc 
phát triển có thể thực hiện trong miền không gian hay miền tần số. Cuối cùng, trong 
khi việc thực hiện phải là số (digitally) thì khôi phục có thể thực hiện trong miền 
không gian (qua tích chập) hay miền tần số (qua phép nhân). 
Thật may mắn, bây giờ ta đã xác định đượ tập điều kiện mà, nếu được bảo toàn, 
làm cho các phương pháp tiếp cận khác nhau đều cần thiết ngang nhau. Vì thế, chúng 
 313 
ta có thể sử dụng bất cứ cách tiếp cận nào phù hợp với yêu cầu và ràng buộc của ta 
nhất, miễn là chúng ta quan tâm đến những giả thiết cơ bản. 
Thường thường, có hai hay nhiều cách tiếp cận đều dẫn đến cùng một kỹ thuật 
khôi phục. Các phương pháp tiến hành tốt trong thực tiễn là cơ sở cho bài toán này. 
Một trong số chúng luôn luôn có vẻ như chờ đợi ta cuối hành trình, không quan tâm 
đến hướng ta xuất phát hay loại bản đồ và la bàn mà ta sử dụng. 
Trong chương này, chúng ta xem xét một vài kỹ thuật khôi phục ảnh quan trọng. 
Chúng ta bắt đầu bằng cách tiếp cận trong miền tần số liên tục theo thứ tự phát triển 
và ứng dụng của chúng đối với ảnh số. Sau đó ta sẽ nghiên cứu trong miền không 
gian rời rạc để thống nhất các kết quả có trước thành cơ cấu chung. Tiếp theo, chúng 
ta sẽ xem xét khía cạnh thực tiễn của việc xử lý mờ biến thiên và nhiễu không cố 
định. Sau khi xác định các tham số suy giảm ta tiến hành khôi phục ảnh. 
16.2. CÁC BỘ LỌC KHÔI PHỤC ẢNH KINH ĐIỂN 
Trong phần này, chúng ta sử dụng hệ thống trong Hình 16-1 để mô phỏng sự suy 
giảm và khôi phục ảnh. Ảnh f(x,y) được làm mờ bằng phép toán tuyến tính h(x,y) và 
nhiễu n(x,y) được thêm vào để tạo thành ảnh suy giảm w(x,y). Ảnh này được nhân 
chập với bộ lọc khôi phục g(x,y) để cho ảnh khôi phục f^(x,y). 
Hình 16-1 Mô hình khôi phục ảnh liên tục 
Lý thuyết hệ thống tuyến tính đã được sử dụng để thiết kế các bộ lọc điện tử trong 
nhiều năm trước khi xử lý ảnh trở nên phổ biến. Nó được ứng dụng rộng rãi trong 
quang học, xử lý tín hiệu số và các lĩnh vực khác. Ví dụ, giải chập được biết đến 
trong thiết kế bộ lọc điện tử và phân tích chuỗi thời gian. Thậm chí ước lượng sai số 
bình phương trung bình (MSE) tối thiểu được Norbert Wienner trình bày vào năm 
1948. Vì thế, nhiều kỹ thuật ứng dụng trong khôi phục ảnh là sự tổng hợp từ các 
phương pháp một chiều đã sử dụng trong xử lý tín hiệu tương tự và tín hiệu số. Thậm 
chí khi trở thành đặc trưng, các kỹ thuật mới đã được trình bày, chúng tập trung vào 
cách tiếp cận miền tần số kinh điển 
16.2.1. Giải chập (Deconvolution) 
Vào giữa thập niên 60, giải chập (lọc ngược) đã bắt đầu được ứng dụng rộng rãi 
để khôi phục ảnh số. Nathan đã sử dụng giải chập hai chiều để khôi phục ảnh từ các 
nhiệm vụ thám hiểm hành tinh Ranger, Surveyor và Mariner. Vì phổ tín hiệu thường 
tắt dần nhanh hơn nhiễu ở cùng tần số, nên các thành phần tần số cao thường bị 
nhiễu tác động. Phương pháp tiếp cận của Nathan đã hạn chế hàm truyền đạt giải 
chập xuống một giá trị tối đa nào đó (Hình 16-2). 
Trong suốt chu kỳ lấy mẫu, Harris đã giải chập vệt mờ do sự hỗn loạn của bầu khí 
quyển trong ảnh thiên văn sử dụng một mô hình phân tích đối với PSF và 
McGlamery đã giải chập sự hỗn loạn khía quyển sử dụng một PSF xác định qua thực 
nghiệm. Do đó, giải chập đã trở thành kỹ thuật tiêu chuẩn cho vấn đề khôi phục ảnh. 
+
),( yxf
),( yxh ),( yxg
),( yxn
),( yxw ),(^ yxf
 314 
Hình 16-3 minh hoạ sự cải tiến có thể có trên ảnh khi kỹ thuật này được thực hiện 
cẩn thận. 
Hình 16-2 Giải chập 
HÌNH 16-3 
Hình 16-3 Giải chập ảnh Surveyor: (a)trước; (b) sau 
16.2.2. Giải chập Wienner 
Trong đa số các ảnh, các điểm ảnh liền kề rất tương quan với nhau, trong khi các 
mức xám của các điểm ảnh riêng biệt chỉ tương quan lỏng lẻo. Từ đó, chúng ta có thể 
chứng tỏ rằng hàm tự tương quan của ảnh đặc thù nói chung là suy giảm nhiều so với 
ban đầu. Vì phổ năng lượng của ảnh là biến đổi Fourier (thực và chẵn) hàm tự tương 
quan của nó nên chúng ta có thể chứng tỏ được rằng phổ năng lượng của một ảnh nói 
chung suy giảm theo tần số. 
Các nguồn nhiễu đặc trưng có phổ năng lượng bằng phẳng hoặc suy giảm theo tần 
số chậm hơn so với phổ năng lượng của ảnh. Vì thế, trạng thái mong muốn là sao cho 
1 1
15
h h
hh
(a) §¸p øng lý thuyÕt (b) §¸p øng thùc tÕ
(c) §¸p øng ®¶o (d) §¸p øng ®· hiÖu chØnh
0
0.2
1
 315 
phổ tín hiệu ở tần số thấp còn nhiễu chiếm các tần số cao. Bởi vì kích thước bộ lọc 
giải chập thường tăng theo tần số nên bộ lọc sẽ tăng cường nhiễu tần số cao. Những 
cố gắng vận dung giải chập bài toán nhiễu bằng các phương pháp đặc biệt và trực 
quan. 
Helstrom đã chấp nhận thủ tục ước lượng sai số bình phương trung bình và đã 
trình bày bộ lọc giải chập Wienner, có hàm truyền đạt hai chiều 
),(),(),(
),(),(
),( 2
*
vuPvuPvuH
vuPvuH
vuG
nf
f
 (1) 
và có thể viết lại như sau: 
),(/),(),(
),(),( 2
*
vuPvuPvuH
vuHvuG
fn
 (2) 
trong đó Pf và Pn là phổ năng lượng của tín hiệu và nhiễu. Bộ lọc này được trình 
bày trong chương 11 cho trường hợp một chiều. 
Hình 16-4 Vấn đề nhiễu trong giải chập 
Slepian đã mở rộng giải chập Wienner để giải thích PSF suy biến (ví dụ do nhiễu 
loạn khí quyển). Sau đó, Pratt và Habibi đã phát triển công cụ để tăng hiệu quả tính 
toán của giải chập Wienner. 
 s
ss
s s
Hµm tù t¬ng quan Phæ n¨ng lîng nhiÔu
Phæ n¨ng lîng Tû lÖ tÝn hiÖu/nhiÔu (SNR)
Phæ biªn ®é Bé läc gi¶i chËp
)(fR )(sPn
)(sPf
)(
)(
sP
sP
n
f
)(sF
)(
1
sH
 316 
Giải chập Wienner tạo ra một phương pháp tối ưu cho việc thực hiện hàm truyền 
đạt giải chập trong sự hiện diện của nhiễu, nhưng nó bị vướng mắc với ba vấn đề hạn 
chế tính hiệu quả của nó. Thứ nhất, tiêu chuẩn sai số bình phương trung bình (MSE) 
của sự tối ưu không đặc biết tốt nếu ảnh đang được khôi phục trong mắt người. Vấn 
đề là ở chỗ tiêu chuẩn MSE xử lý mọi sai số như nhau, bất chấp vị trí của chúng 
trong ảnh, trong khi mắt phải chịu đựng các sai số trong vùng tối và vùng gradient 
cao nhiều hơn các hệ thống khác. rong việc tối thiểu hoá sai số bình phương trung 
bình, bộ lọc Wienner cũng có xu hướng làm trơn ảnh nhiều hơn những gì mà mắt ưa 
thích. 
Thứ hai, giải chập Wienner cổ điển không thể vận dụng PSF có biến làm mờ 
thuộc không gian. Điều này xuất hiện với sự hôn mê, chứng loạn thị, sự uốn cong 
của trường thể hiện và với vệt mờ di chuyển trong khi quay. 
Cuối cùng, kỹ thuật không thể vận dụng cho các trường hợp phổ biến của tín hiệu 
và nhiễu dừng. Đa số các ảnh là không dừng, có các khu vực bằng phẳng rộng phân 
biệt bởi sự chuyển tiếp dễ nhận thấy (biên). Hơn nữa, một vài nguồn nhiễu quan 
trọng tuỳ thuộc rất nhiều vào mức xám cục bộ. Trong hai phần tiếp theo, ta sẽ xem 
xét những cách thức thực hiện và cải tiến giải chập Wienner. 
16.2.3. Cân bằng phổ năng lượng 
Canon đã chứng minh bộ lọc khôi phục phổ năng lượng của ảnh bị suy giảm thành 
biên độ ban đầu là 
2/1
2 ),(),(),(
),(
),(
vuPvuPvuH
vuP
vuG
nf
f (3) 
Giống như bộ lọc Wienner, bộ lọc cân bằng phổ năng lượng (Power Spectrum 
Equalization-PSE) này không có pha (thực và chẵn). Nó thích hợp cho các hàm làm 
mờ không pha hay pha được xác định bởi các phương pháp khác. 
Điểm tương đồng giữa bộ lọc PSE (biểu thức (3)) và bộ lọc giải chập Wienner 
(biểu thức (1)) là quá rõ ràng. Cả hai bộ lọc đều giảm xuống còn giải chập trực tiếp 
trong tình trạng không nhiễu và cả hai cắt hoàn toàn trong tình trạng không có tín 
hiệu. Tuy nhiên, bộ lọc PSE không cắt tại các vị trí 0 trong hàm truyền đạt làm mờ 
F(u, v). 
Khả năng khôi phục ảnh của bộ lọc PSE rất tốt và trong vài trường hợp bộ lọc 
PSE có thể được ưa thích hơn giải chập Wienner. Đôi khi bộ lọc PSE còn được gọi là 
bộ lọc đồng hình (homomorphic filter). 
16.2.4. Các bộ lọc trung bình hình học 
Xét hàm truyền đạt bộ lọc khôi phục được cho bởi 
1
2
*
2
*
),(/),(),(
),(
),(
),(),(
vuPvuPvuH
vuH
vuH
vuHvuG
fn
 (4) 
trong đó  và  là các hằng số thực dương. Bộ lọc này là sự khái quát của các bộ 
lọc đã đề cập trước đây. Hàm truyền đạt được tham số hoá theo  và . Chú ý, nếu  
= 1 thì biểu thức (4) rút gọn thành bộ lọc giải chập. Hơn nữa, nếu  = 1/2 và  = 1, 
thì nó sẽ trở thành bộ lọc PSE trong biểu thức (3). 
 317 
Cần lưu ý thêm rằng, nếu  = 1/2 thì biểu thức (4) sẽ xác định bộ lọc trung bình 
hình học giữa giải chập bình thường và giải chập Wienner. Vì thế biểu thức (3) còn 
có một tên gọi nữa là bộ lọc trung bình hình học. Tuy nhiên, thực tế thì tên gọi này 
thường dùng cho bộ lọc tổng quát hơn trong biểu thức (4). 
Nếu trong biểu thức (4),  = 0 thì nó trở thành bộ lọc tham số Wienner 
),(/),(),(
),(),( 2
*
vuPvuPvuH
vuHvuG
fn
 (5) 
Nếu  = 1 biểu thức này sẽ trở thành bộ lọc giải chập Wienner của biểu thức (2), 
ngược lại  = 0 sẽ rút gọn thành giải chập trực tiếp. Nói chung,  có thể được chọn để 
có được bộ lọc làm trơn kiểu Wienner mong muốn. 
Biểu thức (4) trình bày một lớp các bộ lọc khôi phục rất phổ biến thường dùng 
trong các hàm làm mờ tuyến tính, bất biến không gian và nhiễu cộng không tương 
quan. Andrews và Hunt đã nghiên cứu khả năng khôi phục của bộ lọc trong biểu thức 
(4) dưới các điều kiện hơi mờ và nhiễu vừa phải. Chúng chứng tỏ rằng, dưới những 
điều kiện này, giải chập trực tiếp ít mong muốn nhất và giải chập Wienner tạo ra hiệu 
quả lọc thông thấp khắt khe hơn mà mắt người mong muốn. Bộ lọc tham số Wienner 
 < 1 và bộ lọc trung bình hình học cùng một ràng buộc có vẻ như tạo ra các kết quả 
dễ chịu hơn. 
16.3. SỰ KHÔI PHỤC ĐẠI SỐ TUYẾN TÍNH 
Andrews và Hunt đã đề xuất một phương pháp tiếp cận bài toán khôi phục ảnh 
dựa trên cơ sở đại số tuyến tính. Tiếp cận này có thể lôi cuốn những người thích 
dùng đại số ma trận hơn phép tính tích phân và toán học rời rạc để phân tích các hàm 
liên tục. Nó đưa ra một sự trình bày thống nhất về các bộ lọc khôi phục, kể cả những 
bộ lọc đã đề cập trước đây và nó mang lại những hiểu biết về khía cạnh bằng số của 
bài toán khôi phục ảnh. 
Bởi vì kích thước các vec tơ và cả các ma trận nên phương pháp tiếp cận đại số 
tuyến tính có thể không mang lại hiệu quả. Thay vào đó, một kỹ thuật khôi phục phát 
triển theo phương pháp tiếp cận này có thể được thực hiện hiệu quả hơn bằng 
phương pháp khác. 
16.3.1. Mô hình khôi phục rời rạc 
Hình 16-5 trình bày một mô hình mad ta sẽ sử dụng trong việc phát triển các kỹ 
thuật khôi phục không gian rời rạc. Hàng trên đỉnh biểu thị trạng thái mong muốn 
(nhưng không có khả năng), đó là một bộ số hoá lý tưởng hoạt động trên f(x, y), là 
hàm liên tục không sy biến biểu diễn cho cảnh vật lý tạo ra ảnh. Bộ số hoá này tạo ra 
một vec tơ cột f N2  1, đệm thêm và xếp chồng theo hàng, chứa ảnh số mong muốn. 
Khuôn dạng vec tơ cột này đối với việc lưu trữ ảmh số đã được đề cập trong phần 
9.3.4. 
Hàng thứ hai của mô hình mô phỏng điều sẽ xảy ra khi một ảnh được số hoá và 
được khôi phục. Hàm f(x, y) bị mờ bởi một phép toán tuyến tính h(x, y) và sau đó 
một ảnh nhiễu hai chiều n(x, y) được thêm vào, tạo thành g(x, y). Một bộ số hoá lý 
tưởng tạo ra một vec tơ cột g đệm thêm, sắp xếp theo hàng, chứa ảnh số N  N quan 
sát được. Điều này tuỳ thuộc vào phép toán khôi phục tạo ra
f , xấp xỉ với kết quả 
mong muốn, f. 
 318 
Hàm mờ là tuyến tính, nhưng nó có thể là bất biến dịc hoặc không. Nếu nó là bất 
biến dịch thì nó chẳng qua là tích chập của f(x, y) với PSF h(x, y). Nếu thực tế có 
nhiều hơn một toán tử làm mờ trong chuỗi mô phỏng, thì các toán tử này được giả 
định là kết hợp với nhau thành h(x, y). Cũng như vậy, nhiều nguồn nhiễu được giả 
thiết là kết hợp thành một nguồn n(x, y). Mô hình này vẫn chưa hoàn thiện, vì nó 
không tính đến nhiễu phi tuyến và nhiễu phụ thuộc tín hiệu. 
Hàng thứ ba của hình cho thấy mô hình mà chúng ta phân tích ở đây. Một bộ số 
hoá lý tưởng tạo ra f, như trước, nhưng điều này tuỳ thuộc vào phép toàn tuyến tính 
rời rác H. Một ảnh nhiễu rời rạc, mã hoá theo vec tơ cột n, được thêm vào để tạo ra 
ảnh quan sát g, cũng có dạng vec tơ. Một phép toán khôi phục rời rạc lại tạo ra ước 
lượng 
f . 
Khuôn dạng của vec tơ ảnh quan sát bây giờ có thể được biểu diễn dưới dạng đầy 
đủ như sau 
 g = Hf + n (6) 
trong đó g, f và n là các vec tơ cột N2  1 và H là ma trận N2  N2. Nếu hàm mờ là 
bất biến dịch thì H là ma trận khối vòng tròn. Ngoài ra, các ảnh số mà ta quan tâm 
đều là N  N sau khi đệm thêm các giá trị 0 cần thiết. 
Lưu ý rằng bây giờ, bằng các phép toán rời rạc, chúng ta đang mô phỏng các suy 
biến nhận được trước khi ảnh được chuyển đổi sang dạng số. Mô phỏng này có hai 
nhánh. Đầu tiên, ta có thể tạo các ví dụ mô phỏng rất ấn tượng bằng mô hình này, vì 
ta có thể thiết kế quá trình suy biến và thực hiện nó chính xác. Sự khôi phục trở 
thành một bài tập bằng số đơn thuần, nếu ta chọn một quá trình suy biến có thể đảo 
ngược. Ta thực hiện điều đó, ta xoa bỏ nó, và ta khôi phục lại nguên mẫu trong phạm 
vi sai số làm tròn. 
Thứ hai, bây giờ ta tiến hành mô phỏng các quá trình (liên tục) bằng các phép 
toán rời rạc. Điều này tương tự như tình huống trước đây mà chúng ta đã phải bảo 
đảm rằng quá trình xử lý rời rạc dữ liệu lấy mẫu bảo toàn nguyên vẹn các hàm liên 
tục cơ bản. Hiệu lực của khôi phục ảnh cố gắng xoay quanh sự mô phỏng chính xác 
quá trình suy biến ảnh. 
16.3.2. Khôi phục không ràng buộc 
Nếu n = 0 hoặc nếu ta không biết một tí gì về nhiễu, ta có thể thiết lập sự khôi 
phục như bài toán tối thiểu hoá bình phương nhỏ nhất theo cách dưới đây. Cho )(
fe là 
một vec tơ sai số thặng dư thu được từ việc sử dụng 
f như một xấp xỉ của f. Khi đó 
biểu thức (6) trở thành 
 fHgfefefHHfg )()( hay (7) 
và ta tối thiểu hoá hàm mục tiêu 
 
 
 
  fhgfHgfHgfef
t
W
22
 (8) 
trong đó aaa t ký hiệu cho tiêu chuẩn Ơ clit của một vec tơ, tức là, câưn bậc 
hai của tổng bình phương các phần tử của nó. 
 319 
Nghĩa là ta chọn 
f sao cho nếu nó bị H làm mờ thì kết quả sẽ khác ảnh quan sát g 
càng ít càng tốt theo nghĩa bình phương trung bình. Vì bản thân g là f đơn giản bị 
làm mờ bởi H, nên đây là cách tiếp cận tốt nhất. Nếu f và
f , cả hai đều bị H làm mờ, 
gần giống nhau thì 
f có thể là xấp xỉ tốt nhất đối với f. 
Chú ý rằng công thức này có phần khác với công thức đã sử dụng trong phần trình 
bày bộ lọc Wienner trong phần 11.5.2. Ở đó, ta đã cố gắng tối thiểu hoá sự khác nhau 
giữa tín hiệu khôi phục và tín hiệu ban đầu. Ở đây, ta đã hoàn thành việc tối thiểu 
hoá sự khác nhau giữa ảnh mờ ban đầu và ước lượng mờ của ảnh ban đầu. Chúng ta 
không thể mong đợi hai công thức này cho kết quả như nhau. 
Cho đạo hàm của )(
fW theo
f bằng 0, ta được 
 02)( 
 
 
fHgH
f
f tW (9) 
và giải theo
f ta được 
 gHgHHHf 11)( 
 tt (10) 
trong đó dấu bằng thứ hai là đúng vì H là ma trận vuông. 
Biểu thức (10) giống như bộ lọc đảo. Với hàm mờ bất biến dịch, H sẽ là ma trận 
khối vòng tròn và nó có thể được dùng để xác định giải chập, cho trong miền tần số 
bởi 
     vuH
vuGvuF
,
,, 
 (11) 
Nếu H(u, v) có các giá trị 0 thì H là duy nhất và H-1 hay (HtH)-1 không tồn tại. 
16.3.3. Khôi phục ràng buộc bình phương nhỏ nhất 
Ta có thể sắp xếp biểu thức (6) lại như sau 
 g - Hf = n (12) 
Một cách để đưa thành phần nhiễu vào ràng buộc tối thiểu mà các tiêu chuẩn của 
mỗi vế trong biểu thức (12) là như nhau; tức là, 
 2
2
nfHg 
 (13) 
Bây giờ chúng ta có thể thiết lập bài toán như tối thiểu hoá của 
 
 2
22
)( nfHgfQf W (14) 
trong đó Q là một ma trận mà ta chọn để định nghĩa một toán tử tuyến tính nào đó 
trên 
f và  là một hằng số gọi là số nhân Lagrăng. Khả năng xác định Q cho ta tính 
linh hoạt khi thiết lập mục đích khôi phục. 
 320 
Như trước, ta đặt đạo hàm W(
f ) theo
f bằng 0: 
 0)(22)( 
 
fHgHfQQ
f
f ttW  (15) 
Sau đó giải với f ta được 
 gHQQHHf ttt 1)( 
  (16) 
trong đó  = 1/ là hằng số mà phải được điều chỉnh sao cho ràng buộc của biểu 
thức (13) thoả mãn. Đây là biểu thức tổng quát cho giải pháp khôi phục ràng buộc 
bình phương nhỏ nhất. 
16.3.3.1. Bộ lọc giả ngược 
Nếu ta đặt Q = I, ma trận đồng nhất, thì ta sẽ tối thiểu hoá được tiêu chuẩn f tuỳ 
thuộc vào ràng buộc nhiễu của biểu thức (13). Khi đó biểu thức (16) trở thành 
   gHIHHf tt 1   (17) 
Chú ý rằng nếu ta đặt  = 0 thì biểu thức này rút rọn thành bộ lọc đảo như biểu 
thức (10). 
16.3.3.2. Bộ lọc tham số Wienner 
Chúng ta có thể coi f và n như các vec tơ ngẫu nhiên và chọn Q bằng tỷ số nhiễu-
tín hiệu 
 2/12/1 nf RRQ
 (18) 
Trong đó Rf = {fft} và Rn = {nnt} là các ma trận hiệp biến của tín hiệu và nhiễu 
tương ứng. Khi đó biểu thức (16) trở thành 
 gHRRHHf tnf
t 11 )( 
  (19) 
Bằng cách giả thiết tính dừng và bất biến dịch, và bằng cách sử dụng ma trận biến 
đổi Fourier, ta có thể dễ dàng chứng minh rằng biểu thức này dẫn đến bộ lọc tham số 
Wienner của biểu thức (5). Trong khi  là một tham số có thể điều chỉnh, chú ý rằng 
với  = 1, ta có bộ lọc Wienner cổ điển đã đề cập trong phần 11.5.2 để tối thiểu hoá 
độ lệch bình phương trung bình giữa ảnh ban đầu và ảnh khôi phục. 
Trình bày về đại số tuyến tính trước đây, sử dụng sự tối thiểu hoá của biểu thức 
(14) với tiêu chuẩn của biểu thức (18) đối với trường hợp hàm mờ bất biến dịc