Cho E = {(1,1,1);(1, 0,1);(1,1, 0)} là cơ sở của R3 và x = (3, 1, -2) là một véctơ của R3. Tìm toạ độ của véctơ x trong cơ sở E.
Cho E = { x2 + x + 1; x + 1;2x + 1} là cơ sở P2[x].
Tìm toạ độ của véctơ p(x) = 3x2+4x-1 trong cơ sở E.
                
              
                                            
                                
            
                       
            
                 33 trang
33 trang | 
Chia sẻ: lylyngoc | Lượt xem: 3537 | Lượt tải: 2 
              
            Bạn đang xem trước 20 trang tài liệu Đại số tuyến tính Chương 4: Không gian vecto (tt), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Trường ĐH Bách khoa tp Hồ Chí Minh
Khoa Khoa học ứng dụng - Bộ môn Toán ứng dụng
------------------------------------------------------
Ñaïi soá tuyeán tính 
Chöông 4: KHOÂNG GIAN VEÙCTÔ (tt)
• Giaûng vieân TS. Ñaëng Vaên Vinh
Nội dung
---------------------------------------------------------------------------------------------------------------------------
I – Toạ độ của véctơ.
II – Không gian con.
III - Tổng và giao của hai không gian con.
I. Toạ độ của véctơ
-------------------------------------------------------------------------------------------------
Cho E ={e1, e2, …, en} là cơ sở sắp thứ tự của K-kgvt V
Định nghĩa toạ độ của véctơ
1 1 2 2 ...     n nx x e x e x e
1
2[ ]E
n
x
x
x
x
 
 
 
 
 
 
x V 
Bộ số được gọi là tọa độ của véctơ x trong
cơ sở E.
1 2( , ,..., )nx x x
I. Toïa ñoä cuûa veùctô 
-------------------------------------------------------------------------------------------------
2 2 2Cho { 1; 2 1; 2}E x x x x x x      
Ví dụ
Tìm véctơ p(x), biết toạ độ trong cơ sở E là
3
[ ( )] 5
2
Ep x
 
    
 
là cơ sở của không gian 2[x]P
3
[ ( )] 5
2
 
    
 
Ep x
2 2 2( ) 3( 1) 5( 2 1) 2( 2)         p x x x x x x x
( ) 5 2   p x x
I. Toïa ñoä cuûa veùctô 
-------------------------------------------------------------------------------------------------
Cho {(1,1,1);(1,0,1);(1,1,0)}E 
Ví dụ
là một véctơ của R3. Tìm toạ độ của véctơ x trong cơ sở E.
là cơ sở của R3 và x = (3,1,-2)
Giả sử
1
2
3
[ ]
 
    
 
E
x
x x
x
1 1 2 2 3 3   x x e x e x e
1 2 3(3,1, 2) (1,1,1) (1,0,1) (1,1,0)    x x x
1 2 3
1 3
1 2
3
1
2
  
  
   
x x x
x x
x x
4
[ ] 2
5
 
     
 
Ex
I. Toïa ñoä cuûa veùctô
-------------------------------------------------------------------------------------------------
2
2Cho { 1; 1;2 1} laø cô sôû [ ].E x x x x P x    
Ví dụ
Tìm toạ độ của véctơ p(x) = 3x2+4x-1 trong cơ sở E.
Giả sử [ ( )]
 
    
 
E
a
p x b
c
1 2 3( ) . . .   p x a e b e c e
2 23 4 1 ( 1) ( 1) (2 1)         x x a x x b x c x
3
2 4
1
   
    
a
a b c
a b c
3
[ ( )] 9
5
 
     
 
Ep x
I. Toïa ñoä cuûa veùctô 
-------------------------------------------------------------------------------------------------
1 1
2 22. [ ]E
n n
x y
x y
x y
x y
 
   
 
  
1 1
2 21. 
n n
x y
x y
x y
x y
 
  
 
1
2[ ]E
n
y
y
y
y
 
 
 
 
 
 
Tính chất của tọa độ véctơ
1
2[ ]E
n
x
x
x
x
 
 
 
 
 
 
1
23. [ ]E
n
x
x
x
x
 
 
 
 
 
 
I. Toïa ñoä cuûa veùctô 
-------------------------------------------------------------------------------------------------
Ý nghĩa của toạ độ véctơ.
Trong không gian n chiều V cho một cơ sở
E ={e1, e2, …, en}.
Tất cả các vectơ của V đều biễu diễn qua E dưới dạng tọa độ.
Hai phép toán cơ bản: cộng hai vectơ và nhân vectơ với một
số, và sự bằng nhau trong V có thể phức tạp.
Theo tính chất của tọa độ, ta thấy các phép toán này giống
hoàn toàn trong Rn.
Suy ra cấu trúc của không gian vectơ V hoàn toàn giống Rn.
Chứng minh được V và Rn đồng cấu với nhau, vậy nên trong
nghiên cứu ta đồng nhất V và Rn.
Tất cả các không gian n chiều đều coi là Rn.
I. Toïa ñoä cuûa veùctô
-------------------------------------------------------------------------------------------------
2 2 2
2{ 1;3 2 1;2 } [ ].Cho laø taäp con cuûa      M x x x x x x P x
Ví dụ
HỏiM độc lập tuyến tính hay phụ thuộc tuyến tính.
Chọn cơ sở chính tắc của P2[x] là .
2 , ,1{ }E x x
2
1
1 1
1
E[ ]x x
 
      
 
2
3
2 1 2
1
E[3 ]x x
 
      
 
2
2
1
0
E[2 ]x x
 
     
 
Hạng củaM = hạng của họ vectơ củaM ở dạng toạ độ.
1 3 2
1 2 1
1 1 0
A
 
    
 
( ) 2r A  VậyM phụ thuộc tuyến tính
Tập con F
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
V là K-kgvt
Tập con F 2 phép toán trong V K- kgvt F
Kg con F
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Tập con khác rỗng F của K-kgvt V là không gian con của V
khi và chỉ khi hai điều kiện sau đây thỏa.
1. , : f g F f g F   
2. , :      f F K f F
Định lý
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
 1 2 3 3 1 2 3( , , ) | 2 0F x x x R x x x    
Ví dụ
1. Chứng tỏ F là không gian con của R3
2. Tìm cơ sở và chiều của F.
Giải câu 2. 1 2 3( , , )  x x x x F 1 2 32 0   x x x
3 1 22  x x x
Khi đó 1 2 3 1 2 1 2( , , ) ( , , 2 )  x x x x x x x x
1 2(1,0,1) (0,1,2)  x x x
Suy ra là tập sinh của F.(1,0,1);(0,1,2){ }E
Kiểm tra thấy E độc lập tuyến tính. Vậy E là cơ sở của F.
dim( ) 2 F
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
 2( ) [x] | (1) 0 & (2) 0   F p x P p p
Ví dụ
1. Chứng tỏ F là không gian con của P2[x].
2. Tìm cơ sở và chiều của F.
Giải câu 2. 2( )    p x ax bx c F (1) 0 (2) 0 &   p p
Suy ra là tập sinh của F.2 3 2{ }  E x x
Hiển nhiên E độc lập tuyến tính. Vậy E là cơ sở của F.
dim( ) 1 F
0
4 2 0
  
 
  
a b c
a b c
; 3 ; 2      a b c
2( ) 3 2     p x x x 2( ) ( 3 2)   p x x x
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Ví dụ
 2
1 1
[ ] | 0
2 2
F A M R A
  
      
1. Chứng tỏ F là không gian con M2[R]
2. Tìm cơ sở và chiều của F.
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
L(M)=Span 1 2 1 1 2 2{ , ,..., } { }n n n iv v v v v v R        
1 2{ , , , }nM v v v V 
1. L(M) là không gian con của V
2. dim(L(M)) = Hạng của họM.
II. Không gian con
---------------------------------------------------------------------------------------------------------------------------
Giả sử dim(V) = n
1 2{ , ,..., }mM x x x
HạngM = HạngMa trận
M phụ thuộc tt
M độc lập tt
hạngM < m
M tập sinh của VM là cơ sở của Vx là tổ hợp tt củaM
hạngM = m hạngM = dim(V)
hạngM = dim(V) = số vectơ trong M
hạngM = hạngM thêm vectơ x
Kgian con 
Chiều kgian con M = hạngM
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Cho (1,1,1);(2,1,1);(3,1,1)F  
Tìm cơ sở và chiều của F.
Ví dụ
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Cho 2 2 21,2 3 1, 2 2F x x x x x x       
Tìm cơ sở và chiều của F.
Ví dụ
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Ví dụ
2
 ,
2
   
   
  
a b a b
F a b R
b a
Tìm cơ sở và chiều của F.
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Ví dụ
1 1 2 1 3 1 1 0
, , ,
2 1 0 1 2 1 2 0
F                        
Tìm cơ sở và chiều của F.
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Cho (1, 2,3); {(1,1,1);(2,1,0);(3, 1,3)}x M   
x có thuộc không gian con sinh ra bởi M?
Ví dụ
II. Khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Cho (1,0, ); {(1,1,1);(2,3,1);(3,2,0)}x m M 
Tìm tất cả giá trị của m để x thuộc không gian con sinh ra
bởi M?
Ví dụ
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Cho F và G là hai không gian con của K-kgvt V.
Giao của hai không gian con F và G là tập hợp con của V, ký
hiệu bởi
Định nghĩa giao của hai không gian con
{ | vaø }F G x V x F x G   
Tổng của hai không gian con F và G là tập hợp con của V,
ký hiệu bởi
Định nghĩa tổng của hai không gian con
{ | vôùi vaø }F G f g f F g G    
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
2.
Định lý
1. là hai không gian con của V. & F G F G
dim( ) dim( ) dim( ) dim( )F G F G F G    
Kết quả
F G F F G V   
F G G F G V   
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Các bước để tìm không gian con F+G
1. Tìm tập sinh của F. Giả sử là {f1, f2, …, fn}
1 2 1 23. , ,..., , , ,...,n nF G f f f g g g  
2. Tìm tập sinh của G. Giả sử là {g1, g2, …, gn}
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Cho F và G là hai không gian con của R3, với
Ví dụ
 1 2 3 1 2 3( , , ) | 2 0}F x x x x x x   
 1 2 3 1 2 3( , , ) | 0}G x x x x x x   
.F G1. Tìm cơ sở và chiều của
2. Tìm cơ sở và chiều của .F G
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Giải câu 1.
1 2
1
3
2 3
0
2 0
x
x x x
x x 
  
 
1 2 3( , , )x x x x F G   
 & x F x GÛ Î Î
1
2
3
3
2
x
x
x
a
a
a
ì =ïïïÛ =íïï =ïî
Khi đó 1 2 3( , , ) ( ,3 ,2 )x x x x    
(1,3,2)x aÛ =
(1,3,2){ }EÞ = là tập sinh của F GÇ
vì E độc lập tuyến tính. Suy ra E là cơ sở của F GÇ
dim( ) 1.F GÞ Ç =
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Giải câu 2. Bước 1. Tìm tập sinh của F. 1 {(-1,1,0),(2,0,1)}E 
dim( ) ( ) 3.F G r AÞ + = =
Bước 2. Tìm tập sinh của G. 2 {(1,1,0), ( 1,0,1)}E  
( 1,1,0), (2,0,1 (1,1,0), (, 1,0,1))F G -Þ + -= 
1 1 0
2 0 1
1 1 0
1 0 1
A
æ ö- ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷÷ç ÷ç ÷ç-è ø
1 1 0
0 2 1
0 0 1
0 0 0
bñs haøngc ñv 
æ ö- ÷ç ÷ç ÷ç ÷ç ÷¾ ¾ ¾ ¾ ¾® ç ÷ç ÷-ç ÷÷ç ÷ç ÷çè ø
Cơ sở: ( 1,1,0), (0,2,1),(0,0, 1){ }E = - -
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Cho F và G là hai không gian con của R3, với
Ví dụ
 1 2 3 1 2 3( , , ) | 0}F x x x x x x   
(1,01,);(2,3,1)G  
.F G1. Tìm cơ sở và chiều của
2. Tìm cơ sở và chiều của .F G
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Giải câu 1.
(1,0,1) (2,3,1)x G x     
1 2 3( , , )x x x x F G    & x F x GÛ Î Î
Vậy
dim( ) 1.F GÞ Ç =
( 2 ,3 , )x a b b a bÛ = + +
 thoûa ñieàu kieän cuûa .x F x F 
2 3 0          3
5
 
 
6 9 3( , , )
5 5 5
x        1 9 2( , , )
5 5 5
  
 
(1,9, 2)
5
x    (1,3,2){ }EÞ = là tập sinh của F GÇ
vì E độc lập tuyến tính. Vậy E là cơ sở
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
Cho F và G là hai không gian con của R4, với
Ví dụ
 1 2 3 41 2 3 4
1 2 3 4
0
( , , , ) 
2 2 0
x x x x
F x x x x
x x x x
    
 
    
 1 2 3 41 2 3 4
1 2 3 4
0
( , , , ) 
3 2 2 3 0
x x x x
G x x x x
x x x x
    
     
.F G1. Tìm cơ sở và chiều của
2. Tìm cơ sở và chiều của .F G
III. Toång vaø giao cuûa hai khoâng gian con
---------------------------------------------------------------------------------------------------------------------------
Cho F và G là không gian con của R3, với
Ví dụ
(1,0,1);(1,1,1) F  
(1,1,0);(2,1,1) G  
.F G1. Tìm cơ sở và chiều của
2. Tìm cơ sở và chiều của .F G
III. Toång vaø giao cuûa hai khoâng gian con 
---------------------------------------------------------------------------------------------------------------------------
.F G
Cho F và G là hai không gian con của P2[x], với
Ví dụ
2{ ( ) [ ] | (1) 0}F p x P x p  
1. Tìm cơ sở và chiều của
2. Tìm cơ sở và chiều của .F G
2{ ( ) [ ] | ( 1) 0}G p x P x p