Sự áp dụng kiến thức vật lý vào nghiên cứu sinh học đã được thực hiện vào cuối thế kỷ XVIII. Năm 1780 hai nhà khoa học Pháp là Lavoadie và Laplace đã tiến hành thí nghiệm để khảo sát tính đúng đắn của định luật I nhiệt động học khi áp dụng vào hệ thống sống. Năm 1791, Galvani, giáo sư giải phẫu trường đại học Bolon (Italia) đã công bố kết quả nghiên cứu trong quyển sách "Bàn về các lực điện động vật trong co cơ", khẳng định có tồn tại dòng điện sinh vật. Năm 1859, Raymond đã phát hiện phần trước và phần sau cầu mắt động vật có xương sống tồn tại một hiệu điện thế và đo được giá trị từ 10 đến 38mV, gọi là điện thế tĩnh (hay điện thế nghỉ ngơi).
23 trang |
Chia sẻ: haohao89 | Lượt xem: 5096 | Lượt tải: 5
Bạn đang xem trước 20 trang tài liệu Đề cương học phần lý sinh học, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐỀ CƯƠNG HỌC PHẦN LÝ SINH HỌC
hãy cho biết hướng nghiên cứu và triền vọng của lý sinh ?
Sự áp dụng kiến thức vật lý vào nghiên cứu sinh học đã được thực hiện vào cuối thế kỷ XVIII. Năm 1780 hai nhà khoa học Pháp là Lavoadie và Laplace đã tiến hành thí nghiệm để khảo sát tính đúng đắn của định luật I nhiệt động học khi áp dụng vào hệ thống sống. Năm 1791, Galvani, giáo sư giải phẫu trường đại học Bolon (Italia) đã công bố kết quả nghiên cứu trong quyển sách "Bàn về các lực điện động vật trong co cơ", khẳng định có tồn tại dòng điện sinh vật. Năm 1859, Raymond đã phát hiện phần trước và phần sau cầu mắt động vật có xương sống tồn tại một hiệu điện thế và đo được giá trị từ 10 đến 38mV, gọi là điện thế tĩnh (hay điện thế nghỉ ngơi). Năm 1865, Holgreen phát hiện được giá trị hiệu điện thế giữa phần trước và phần sau cầu mắt động vật có xương sống sẽ tăng lên khi mắt được chiếu sáng. Sau này các nhà khoa học xác định, đó chính là điện thế hoạt động (hay điện thế hưng phấn). Năm 1875, Calton khẳng định khi mắt được chiếu sáng, không những điện cầu mắt tăng lên như Holgreen đã phát hiện mà điện ở vùng thị giác trên bán cầu đại não cũng tăng lên. Sau này các nhà khoa học xác định đó chính là dòng điện hưng phấn xuất hiện khi mắt được chiếu sáng, đã lan truyền theo dây thần kinh thị
giác tới vùng thị giác trên bán cầu đại não, dẫn tới hiệu ứng sinh học là cảm nhận được ánh sáng. Năm 1922, Erlanger và Gasser dùng dao động ký âm cực để đo dòng điện hưng phấn xuất hiện trong dây thần kinh. Năm 1922,Viện Lý sinh ở Liên Xô cũ được thành lập. Năm 1929, Berger ghi được điện não đồ của động vật. Lịch sử hình thành Lý sinh đã được Taruxop, giáo sư trường Đai học tổng hợp Lomonoxop khẳng định: "Lý sinh được xem như là một khoa học bắt đầu được hình thành từ thế kỷ XIX".
Thế kỷ XX là thế kỷ phát triển mạnh mẽ những nghiên cứu khoa học về Lý sinh trong các lĩnh vực: Nhiệt động học, động học của các quá trình sinh vật, vận chuyển chất qua màng tế bào, quang sinh học và phóng xạ sinh họcv.v...Thời kỳ đầu Lý Sinh được xác định như là một ngành khoa học nghiên cứu các hiện tượng vật lý trong hệ thống sống. Sau đó Lý sinh được xác định như là một ngành khoa học nghiên cứu các cơ chế vật lí, đặc biệt là cơ chế hoá lý của các quá trình xảy ra trong hệ thống sống ở mức độ phân tử, tế bào, mô và cơ thể.
Bước sang thế kỷ XXI, hàng loạt vấn đề đang được đặt ra cho các nhà Lý sinh cần phải nghiên cứu. Đó là năng lượng sinh học, sự chuyển hoá năng lượng và sử dụng năng lượng của hệ thống sống? Bản chất và cơ chế hình thành điện thế sinh vật? Hiện tượng phân cực ở trong hệ thống sống xảy ra như thế nào và có gì khác so với ở hệ vật lý ? Bản chất của quá trình hưng phấn là vấn đề cần phải tiếp tục nghiên cứu. Các chỉ số đặc trưng về vật lý và hoá lý đối với tế bào, mô, cơ quan, cơ thể có mối liên quan như thế nào trong hệ thống tiến hoá ? Vấn đề tự điều chỉnh các quá trình sinh học của cơ thể sống trước những thay đổi của yếu tố môi trường cũng đang được các nhà Lý sinh quan tâm nghiên cứu. Sinh học phóng xạ hiện đang thu hút nhiều nhà khoa học đi sâu nghiên cứu nhằm phục vụ cho công tác chọn giống mới, bảo quản lương thực, thực
phẩm, công cuộc chinh phục vũ trụ, sử dụng năng lượng hạt nhân vì mục đích hoà bình và không loại trừ khả năng có cuộc chạy đua vũ trang trong việc nắm giữ "đòn hạt nhân đầu tiên" với tham vọng bá quyền thế giới .
cho biết nội dung và công thức của định luật I nhiệt động học và ứng dụng của nó trong hệ sinh vật ?
* Định luật I nhiệt động học được phát biểu như sau:
"Trong một quá trình nếu năng lượng ở dạng này biến đi thì năng lượng ở dạng khác sẽ xuất hiện với lượng hoàn toàn tương đương với giá trị của năng lượng dạng ban đầu".
Định luật I nhiệt động học bao gồm hai phần:
- Phần định tính khẳng định năng lượng không mất đi mà nó chỉ chuyển từ dạng này sang dạng khác.
- Phần định lượng khẳng định giá trị năng lượng vẫn được bảo toàn (tức giữ nguyên giá trị khi qui đổi thành nhiệt lượng) khi chuyển từ dạng năng lượng này sang dạng năng lượng khác. Giá trị năng lượng chỉ được bảo toàn khi quá trình xảy ra là quá trình thuận nghịch và hiệu suất của quá trình đạt 100%. Đối với quá trình bất thuận nghịch, hiệu suất của quá trình nhỏ hơn 100% thì ngoài phần năng lượng truyền cho hệ phải cộng thêm phần năng lượng đã toả ra môi trường xung quanh.
Biểu thức toán học của định luật I nhiệt động học: Một hệ cô lập ở trạng thái ban đầu có nội năng U1, nếu cung cấp cho hệ một nhiệt lượng Q thì một phần nhiệt lượng hệ sử dụng để thực hiện công A, phần còn lại làm thay đổi trạng thái của hệ từ trạng thái ban đầu có nội năng U1 sang trạng thái mới có nội năng U2 (U2>U1). Từ nhận xét trên ta có biểu thức:
Q = ΔU + A
Trong đó ΔU = U2 - U1
Công thức (1.1) có thể viết dưới dạng:
ΔU = U1 - U1 = Q - A (1.2)
Đối với quá trình biến đổi vô cùng nhỏ, phương trình (1.2) có thể viết dưới dạng:
dU = δQ - δA (1.3)
dU: Chỉ sự biến đổi nội năng, là hàm số trạng thái
δQ và δA: Chỉ sự biến đổi nhiệt và công, là hàm số của quá trình.
Từ biểu thức (1.2), định luật I nhiệt động học có thể phát biểu như sau:
"Sự biến thiên nội năng của hệ bằng nhiệt lượng do hệ nhận được trừ đi công do hệ đã thực hiện".
Từ định luật I nhiệt động học dẫn đến các hệ quả sau đây:
- Nếu hệ biến đổi theo một chu trình kín (có trạng thái đầu và trạng thái cuối trùng nhau) thì nội năng của hệ sẽ không thay đổi (U2 = U1→ΔU = 0).
- Khi cung cấp cho hệ một nhiệt lượng, nếu hệ không thực hiện công thì toàn bộ nhiệt lượng mà hệ nhận được sẽ làm tăng nội năng của hệ.
Theo (1.2) ΔU = U2 - U1 = Q - A, nếu A = 0 → U2 - U1 = Q. Hệ nhận nhiệt nên Q > 0 → U2 - U1 = Q > 0 → U2 > U1.
- Khi không cung cấp nhiệt lượng cho hệ mà hệ muốn thực hiện công thì chỉ có cách là làm giảm nội năng của hệ.
Theo (1.2) ΔU = U2 - U1 = Q - A, nếu Q = 0 → U2 - U1 = -A
→ A = U1 - U2. Hệ muốn thực hiện công, tức A > 0
→ U1 - U2 > 0 → U1 > U2. Sau khi thực hiện công (tức A > 0), nội năng của hệ đã giảm từ U1 xuống U2 nhỏ hơn.
- Hệ thực hiện theo chu trình kín, nếu không cung cấp nhiệt lượng cho hệ thì hệ sẽ không có khả năng sinh công.
Theo (1.2) ΔU = Q - A, nếu hệ thực hiện theo chu trình kín, theo hệ quả 1 thì ΔU = 0 →
Q - A = 0 → Q = A
Do vậy, nếu Q = 0, tức không cung cấp nhiệt lượng cho hệ thì hệ cũng không có khả năng sinh công, tức A = 0. Hệ quả này, có thể phát biểu dưới dạng: "Không thể chế tạo được động cơ vĩnh cửu loại một, là loại động cơ không cần cung cấp năng lượng nhưng vẫn có khả năng sinh công".
*Định luật I nhiệt động học áp dụng vào hệ sinh vật :
Người đầu tiên tiến hành thí nghiệm để chứng minh tính đúng đắn của định luật I nhiệt động học khi áp dụng vào hệ thống sống là hai nhà khoa học Pháp Lavoisier và Laplace vào năm 1780. Đối tượng thí nghiệm là chuột khoang. Thí nghiệm cách ly cơ thể khỏi môi trường bên ngoài bằng cách nuôi chuột trong nhiệt lượng kế ở nhiệt độ 0 C. Dùng một lượng thức ăn đã xác định trước để nuôi chuột thí nghiệm.Trong cơ thể chuột sẽ diễn ra các phản ứng phân huỷ thức ăn tới sản phẩm cuối cùng là khí CO2 và H2O, đồng thời giải phóng ra nhiệt lượng Q1. Nếu coi ở điều kiện 0 C, chuột đứng yên, không thực hiện công mà chỉ sử dụng nhiệt lượng giải phóng ra do oxy hoá thức ăn để cung cấp nhiệt lượng cho cơ thể và tỏa nhiệt ra môi trường, qua nhiệt kế đo được sự tăng nhiệt độ, theo công thức sẽ tính được nhiệt lượng Q1. Đồng thời lấy một lượng thức ăn tương đương với lượng thức ăn đã cho chuột ăn trước khi thí nghiệm đem đốt cháy trong bom nhiệt lượng kế cũng tới khí CO2 và H2O, giải phóng ra nhiệt lượng Q2. So sánh hai kết quả thí nghiệm thấy giá trị Q1 tương đương với Q2. Điều này chứng tỏ nhiệt lượng giải phóng ra từ các phản ứng hoá sinh diễn ra trong cơ thể sống hoàn toàn tương đương với nhiệt lượng giải phóng ra từ các phản ứng ôxy hoá diễn ra ở ngoài cơ thể sống. Nói cách khác, hiệu ứng nhiệt của quá trình ôxy hoá chất diễn ra ở trong cơ thể sống và hiệu ứng nhiệt của quá trình ôxy hoá chất diễn ra ở ngoài cơ thể sống là hoàn toàn tương đương.
Để tăng độ chính xác của thí nghiệm, sau này có nhiều mô hình thí nghiệm của nhiều nhà nghiên cứu được tiến hành nhưng đáng chú ý nhất là của Atwater và Rosa vào năm 1904.
Đối tượng thí nghiệm là người và thời gian thí nghiệm là một ngày đêm (24 giờ). Trong thời gian thí nghiệm, cho người tiêu thụ một lượng thức ăn nhất định, thông qua đo lượng khí ôxy hít vào (hay khí CO2 thở ra), nhiệt thải ra từ phân và nước tiểu... sẽ tính được hiệu ứng nhiệt của các phản ứng phân huỷ thức ăn diễn ra ở cơ thể người trong 24 giờ. Đồng thời đốt lượng thức ăn tương đương với lượng thức ăn mà người đã tiêu thụ ở trong bom nhiệt lượng kế sẽ đo được nhiệt lượng toả ra.
Kết quả thí nghiệm của Atwater và Rosa khẳng định năng lượng chứa trong thức ăn sau khi cơ thể tiêu thụ đã chuyển thành năng lượng giải phóng thông qua quá trình phân giải bởi các phản ứng hoá sinh diễn ra trong cơ thể sống. Năng lượng chứa trong thức ăn và năng lượng giải phóng ra sau khi cơ thể phân giải thức ăn là hoàn toàn tương đương. Nhiệt lượng trong cơ thể người được chia làm hai loại là nhiệt lượng cơ bản (hay nhiệt lượng sơ cấp) và nhiệt lượng tích cực (hay nhiệt lượng thứ cấp). Nhiệt lượng cơ bản xuất hiện ngay sau khi cơ thể hấp thụ thức ăn và tiêu thụ ôxy để thực hiện phản ứng ôxy hoá đồng thời giải phóng ra nhiệt lượng. Ví dụ khi cơ thể hấp thụ 1 phân tử gam (tức 1M) glucose, lập tức xảy ra phản ứng ôxy hoá đường và giải phóng ra 678 KCal (nhiệt lượng cơ bản). Cơ thể sẽ sử dụng nhiệt lượng cơ bản vào các hoạt động sống, nếu còn dư sẽ
được tích luỹ vào ATP. Phần nhiệt lượng tích luỹ vào các hợp chất cao năng gọi là nhiệt lượng tích cực. Trong cơ thể sống, nhiệt lượng cơ bản và nhiệt lượng tích cực có liên quan với nhau. Nếu nhiệt lượng cơ bản nhiều mà cơ thể sử dụng ít thì nhiệt lượng tích cực sẽ tăng lên. Nếu nhiệt lượng cơ bản không có thì không những nhiệt lượng tích cực bằng không mà cơ thể phải phân giải ATP, giải phóng ra năng lượng để cung cấp cho các hoạt động sống. Ở trạng thái sinh lý bình thường, cơ thể sống sẽ duy trì mối tương quan nhất định giữa nhiệt lượng cơ bản và nhiệt lượng tích cực. Ở mức độ tế bào, có khoảng
50% năng lượng của chất dinh dưỡng được tích luỹ vào ATP.
hãy giải thích trạng thái cân bằng dừng.Trạng thái cân bằng dừng trong hệ thống sống có đặc điểm gì ?
Trạng thái cân bằng dừng: Là trạng thái đặc trưng cho hệ mở nói chung và hệ sinh vật nói riêng. Khi hệ ở trạng thái cân bằng dừng thì sự thay đổi năng lượng tự do luôn xảy ra nhưng với một tốc độ không đổi. Sở dĩ như vậy là do hệ luôn nhận năng lượng tư do từ bên ngoài qua con đường thức ăn. Khi hệ ở trạng thái cân bằng dừng, entropi của hệ đạt giá trị xác định và nhỏ hơn giá trị cực đại. Cơ thể sống luôn có xu hướng duy trì trạng thái cân bằng dừng. Ví dụ như ở động vật ổn nhiệt luôn duy trì thân nhiệt ổn định theo thời gian (ở người là 37oC).
Khi điều kiện sống thay đổi quá lớn thì cơ thể sẽ chuyển sang 1 trạng thái dừng phù hợp hơn ( trạng thái nghỉ ngơi khác với luyện tập thể thao ) có 3 phương thức chuyển trạng thái dừng:
a.Tiệm tiến
b. Độ lệch dư
c. Xuất phát giả
Hệ thống sinh vật : trao đổi cả vật chất lẫn năng lượng với môi trường,độ trật tự cao, khả năng sinh công dồi dào => cân bằng dừng
Trình bày phương pháp nhiệt lượng kế gián tiếp và ứng dụng của nó ?
Phương pháp đo nhiệt lượng của Lavoadie và Laplace dùng trong thí nghiệm chứng minh tính đúng đắn của định luật I nhiệt động học khi áp dụng vào hệ sinh vật, gọi là phương pháp nhiệt lượng kế gián tiếp. Cơ sở của phương pháp này là dựa vào lượng khí ôxy tiêu thụ hoặc lượng khí CO2 do cơ thể thải ra ở động vật máu nóng (động vật có vú và người), có liên quan chặt chẽ với nhiệt lượng chứa trong thức ăn.
Ví dụ: Quá trình ôxy hóa glucose, phản ứng diễn ra như sau:
C6H12O6 + 6O2 = 6CO2 + 6H2O + 678 KCal
(180gam) (134,4l) (134,4l)
Từ phản ứng trên cho thấy cứ ôxy hoá hoàn toàn 1 phân tử gam glucose thì cần phải tiêu thụ 6 phân tử gam ôxy đồng thời thải ra 6 phân tử gam khí CO2 và giải phóng ra 678 KCal. Ở điều kiện tiêu chuẩn, mỗi phân tử gam chất khí đều chứa 22,4 lít. Do vậy 6 phân tử gam ôxy hoặc CO2 đều chứa: 6 x 22,4 lít = 134,4 lít.
Từ đó suy ra, cơ thể cứ tiêu thụ 1 lít O2 để ôxy hoá hoàn toàn một phân tử gam glucose đồng thời thải ra 1 lít CO2 thì kèm theo giải phóng một nhiệt lượng là: 678 KCal:
134,4 lít = 5,047 KCal/lít và gọi là đương lượng nhiệt của ôxy. Dựa và phương pháp nhiệt lượng kế gián tiếp, có thể xác định được sự thải nhiệt của bất kì động vật máu nóng nào thông qua số lít ôxy tiêu thụ (hoặc số lít CO2 thải ra). Từ phản ứng ôxy hóa glucose ở trên và sau này áp dụng chung cho Gluxit khi ôxy hoá hoàn toàn sẽ giải phóng ra nhiệt lượng được tính theo công thức:
Q(KCal) = số lít O2 ( hoặc số lít CO2) x 5,047
Khi ôxy hóa Protein, nhiệt lượng giải phóng ra được tính theo công thức:
Q(KCal) = số lít O2 x 4,46
Khi ôxy hoá Lipit, nhiệt lượng giải phóng ra được tính theo công thức:
Q(KCal) = số lít O2 x 4,74
Đối với thức ăn hỗn hợp gồm cả Gluxit, Protein và Lipit khi bị ôxy hoá, nhiệt lượng giải phóng ra được tính theo công thức:
Q(KCal) = số lít O2 x 4,825
Phương pháp nhiệt lượng kế gián tiếp còn có thể xác định được nhiệt lượng giải phóng ra khi ôxy hoá thức ăn thông qua:
Thương số hô hấp là tỉ lệ khí CO2 trên khí O2.
Thương số hô hấp cũng thay đổi tuỳ thuộc vào loại thức ăn được ôxy hoá.
Đối với phản ứng ôxy hoá glucose
C6H12O6 + 6O2 = 6CO2 + 6H2O
Thương số hô hấp = Số lít khí CO2 / Số lít O2=6 x 22,4 lít /6 x 22,4 lít = 1
Thương số hô hấp của glucose được sử dụng cho cả Gluxit.
Đối với phản ứng ôxy hóa Lipit có thương số hô hấp bằng 0,7, đối với Protein bằng 0,8 còn với thức ăn hỗn hợp có giá trị nằm trong khoảng từ 0,85 đến 0,9.
Khi ôxy hoá thức ăn, bằng cách đo lượng khí O2 tiêu thụ và lượng khí CO2 thải ra (đơn vị là lít), tính được thương số hô hấp. Dựa vào bảng 1.2, lấy giá trị đương lượng nhiệt của ôxy tương ứng với thương số hô hấp nhân với số lít O2 tiêu thụ sẽ biết được nhiệt lượng giải phóng (còn gọi là lượng nhiệt trao đổi hay trị số trao đổi năng lượng).
Ví dụ: Nếu thương số hô hấp là 0,85 thì có đương lượng nhiệt của ôxy là 4,862 và biết cơ thể tiêu thụ 20 lít O2 thì trị số trao đổi năng lượng sẽ là:
4,862 x 20 lít O2 = 97,24 KCal .
Trình bày định luật Hertz và ứng dụng của nó ?
Định luật Heccer phát biểu như sau: "Hiệu ứng nhiệt của các
phản ứng hoá học chỉ phụ thuộc vào dạng và trạng thái của chất đầu và chất cuối mà không phụ thuộc vào cách chuyển biến". Định luật Heccer có ý nghĩa rất quan trọng đối với hệ sinh vật. Trong hệ sinh vật diễn ra nhiều phản ứng phức tạp, cho đến nay vẫn còn nhiều phản ứng trung gian chưa có thể đo trực tiếp được hiệu ứng nhiệt. Dựa vào định luật Heccer có thể giải quyết được khó khăn này.
Tại sao nói định luật II nhiệt động học là định luật về entropy ?
Định luật II nhiệt động học xác định được chiều hướng tự diễn biến của một quá trình cũng như cho biết quá trình tự diễn biến đến khi nào thì dừng lại và cho phép đánh giá khả năng sinh công của các hệ nhiệt động khác nhau.
Định luật II nhiệt động học có ba cách phát biểu.
Cách phát biểu thứ nhất còn gọi là tiên đề Clausius đưa ra 1850: "Nhiệt không thể tự động truyền từ vật lạnh sang vật nóng". Từ đó suy ra rằng nhiệt nói riêng còn những quá trình nhiệt động nói chung chỉ có thể tự diễn ra nếu xảy ra sự truyền năng lượng từ mức độ cao đến mức độ thấp, tức là theo chiều gradien. Gradien của một thông số đặc trưng cho một tính chất nào đó về trạng thái của hệ (như nồng độ) được xác định bằng hiệu số giá trị của thông số đó ở tại hai điểm chia cho khoảng cách giữa hai điểm đó Cách phát biểu thứ hai do Thomson phát triển tiên đề của Clausius "Không thể có một quá trình biến đổi chuyển toàn bộ nhiệt lượng thành công".
Theo cách phát biểu của Thomson thì hiệu suất hữu ích của quá trình bao giờ cũng nhỏ hơn 1 (tức η < 1). Điều này có nghĩa trong tự nhiên không có một quá trình nào có thể chuyển toàn bộ nhiệt lượng được cung cấp thành công hữu ích.
Cách phát biểu thứ ba trên cơ sở ý kiến của Planck, cho rằng Entropi là một tiêu chuẩn đầy đủ và cần thiết để xác định tính thuận nghịch và không thuận nghịch của bất cứ quá trình vật lí nào diễn ra trong thiên nhiên. Định luật II nhiệt động học phát biểu như sau:
"Đối với hệ cô lập, mọi quá trình trong tự nhiên đều diễn biến theo chiều tăng của entropi".
Entropi là một hàm trạng thái nên nó chỉ phụ thuộc vào trạng thái đầu và trạng thái cuối cùng của hệ.
S1= , S2=
S1: Entropi ở trạng thái đầu
S2: Entropi ở trạng thái cuối
Đối với quá trình thuận nghịch theo công thức (1.12) ta có:
S1=S2 → S = Const (hằng số) (1.15)
Trong một hệ nếu chỉ xảy ra các quá trình thuận nghịch thì hệ luôn duy trì ở trạng thái cân bằng nên entropi của hệ là không đổi. Đối với quá trình không thuận nghịch thì S > vì nhiệt lượng cung cấp cho hệ không chỉ làm thay đổi entropi của hệ mà còn làm thay đổi entropi của môi trường xung quanh do sự ma sát và tỏa nhiệt. Thực nghiệm đã xác định đối với một quá trình không thuận nghịch thì entropi của hệ ở trạng cuối (tức S2) bao giờ cũng lớn hơn so với entropi của hệ ở trạng thái đầu (tức S1). Do vậy:
S2-S1>0 (1.16)
Trong một hệ xảy ra các quá trình không thuận nghịch thì entropi của hệ bao giờ cũng tăng lên. Do vậy, nếu là hệ cô lập thì các quá trình xảy ra trong hệ sẽ tiến triển theo chiều tăng của entropi và entropi của hệ sẽ đạt giá trị cực đại ở trạng thái cân bằng nhiệt động.
Tính chung cho cả quá trình thuận nghịch và không thuận nghịch thì sự thay đổi entropi
của hệ có thể viết như sau:
ΔS ≥ 0 (1.17)
Đối với quá trình thay đổi entropi vô cùng nhỏ (gọi là quá trình vi phân) thì: dS ≥ 0 (1.18)
(Dấu bằng dùng cho quá trình thuận nghịch còn dấu lớn hơn dùng cho quá trình không thuận nghịch).
……………
7. Tốc độ phản ứng là gì ? trong cơ thể sinh vật có những loại phản ứng nào ?
Tốc độ phản ứng là tốc độ xuất hiện hay biến mất 1 chất của hợp chất tham gia phản ứng
Tốc độ phản ứng được xác định theo công thức:
v = k. [A]a[B]b (2.1)
[A] và [B] là nồng độ chất A và nồng độ chất B còn a và b là các hệ số
của chất A và của chất B còn k là hằng số tốc độ phản ứng.
các loại phản ứng trong cơ thể sinh vật :
phản ứng đơn phân tử : biến đổi cấu trúc 1 loại phân tử
phản ứng nhị phân tử : biến đổi cấu trúc 2 loại phân tử
phản ứng tam phân tử : biến đổi cấu trúc 3 loại phân tử.
tốc độ phản ứng :
Phản ứng bậc một
Phản ứng bậc một là phản ứng: A → P
Tốc độ phản ứng được xác định theo công thức:
v =- = kC
C: Nồng độ chất A
k: Hằng số tốc độ phản ứng
Phản ứng bậc hai
Phản ứng bậc hai là phản ứng: A+B → P
Theo định nghĩa, tốc độ phản ứng bậc 2 được xác định theo công thức:
V= - ==k.Ca.Cb
Phản ứng bậc ba
Phản ứng bậc 3 là phản ứng:
A + B + C → P
Theo định nghĩa, tốc độ phản ứng bậc 3 được xác định theo công thức:
V= -dC/dt=dP/dt=k.Ca.Cb.Cc
Phản ứng thuận nghịch
Phản ứng thuận nghịch đơn giản nhất có dạng
Phản ứng song song
Trong cơ thể sống có nhiều chất tham gia vào các phản ứng song song. Thí dụ như glucose có thể bị oxy hóa theo con đường oxy hóa khử của chu trình Crebs hoặc theo chu trình hecxozamonophotphat
phản ứng nối tiếp
phản ứng vòng
Phản ứng bậc không
Phản ứng bậc không là phản ứng có tốc độ không thay đổi và tốc độ phản ứng không phụ thuộc vào nồng độ chất tham gia vào phản ứng. Tốc độ phản ứng bậc không được xác định theo phương trình:
Phản ứng tự xúc tác
Phản ứng tự xúc tác là phản ứng tạo thành sản phẩm và sản phẩm lại
đóng vai trò là một chất xúc tác.
Phản ứng dây chuyền
Phản ứng dây chuyền là một hệ thống các phản ứng và có sự xúc tác của sản phẩm trung gian. Điều kiện để có thể xảy ra phản ứng dây chuyền là phải có các trung tâm hoạt động đầu tiên. Các trung tâm hoạt động đầu tiên thường là các gốc tự do. Các gốc tự do có các điện tử không được ghép đôi nên chúng có khả năng tham gia vào phản ứng hoá học rất cao do vậy chúng thường có thời gian sống rất ngắn. Gốc tự do khi tham gia vào