Đề thi xác suất thống kê

Câu 1: ( 1,5 điểm) Có 12 người lên 4 toa tàu một cách ngẫu nhiên. Tìm xác suất của biến cố số người lên mỗi toa là như nhau. Câu 2: (3,5 điểm) Sản phẩm X bán ra thị trường do một nhà máy gồm 3 phân xưởng I, II, và III sản xuất, trong đó phân xưởng I chiếm 30%, phân xưởng II chiếm 45%, phân xưởng III chiếm 25% soá löôïng saûn phaåm. Tỉ lệ sản phẩm loại A do 3 phân xưởng I, II và III sản xuất lần lượt là: 70%, 50% và 90%. a. Tính tỷ lệ sản phẩm loại A do nhà máy sản xuất. b. Chọn mua ngẫu nhiên một sản phẩm X ở thị trường. Giả sử đã mua được sản phẩm loại A, hãy cho biết sản phẩm ấy có khả năng do phân xưởng II sản xuất là bao nhiêu ? c. Cần mua ngẫu nhiên tối thiểu bao nhiêu sản phẩm X ở thị trường để xác suất gặp phải ít nhất một sản phẩm không phải loại A là trên 98%.

doc13 trang | Chia sẻ: ttlbattu | Lượt xem: 5712 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Đề thi xác suất thống kê, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THAM KHẢO Thời gian làm bài : 90 phút 1 Câu 1: ( 1,5 điểm) Có 12 người lên 4 toa tàu một cách ngẫu nhiên. Tìm xác suất của biến cố số người lên mỗi toa là như nhau. Câu 2: (3,5 điểm) Sản phẩm X bán ra thị trường do một nhà máy gồm 3 phân xưởng I, II, và III sản xuất, trong đó phân xưởng I chiếm 30%, phân xưởng II chiếm 45%, phân xưởng III chiếm 25% soá löôïng saûn phaåm. Tỉ lệ sản phẩm loại A do 3 phân xưởng I, II và III sản xuất lần lượt là: 70%, 50% và 90%. a. Tính tỷ lệ sản phẩm loại A do nhà máy sản xuất. b. Chọn mua ngẫu nhiên một sản phẩm X ở thị trường. Giả sử đã mua được sản phẩm loại A, hãy cho biết sản phẩm ấy có khả năng do phân xưởng II sản xuất là bao nhiêu ? c. Cần mua ngẫu nhiên tối thiểu bao nhiêu sản phẩm X ở thị trường để xác suất gặp phải ít nhất một sản phẩm không phải loại A là trên 98%. Câu 3: (3 điểm) Để khảo sát chỉ tiêu X của 1 loại sản phẩm, người ta quan sát một mẫu và có kết quả như sau: X (cm)  11 – 15  15 – 19  19 – 23  23 – 27  27 – 31  31 – 35  35 – 39   Số sản phẩm  8  9  20  16  16  13  18   a. Hãy ước lượng giá trị trung bình chỉ tiêu X của loại sản phẩm trên với độ tin cậy là 96%. b. Nếu muốn ước lượng giá trị trung bình của X với độ chính xác 1,5cm (độ dài khoảng ước lượng là 3cm ) và độ tin cậy 97 % thì phải điều tra thêm ít nhất bao nhiêu sản phẩm nữa? c. Theo kết luận của một tài liệu khác thì trung bình chỉ tiêu X của loại sản phẩm này là 24cm. Dựa vào kết quả khảo sát đã có, hãy kiểm định xem kết luận đó có thể chấp nhận được không với mức ý nghĩa 5% . Câu 4: (2 điểm) Cho X (kg) và Y (cm) là 2 chỉ tiêu của cùng một loại sản phẩm. Quan sát một số sản phẩm ta có bảng số liệu sau ñaây . Haõy lập phương trình ñöôøng hồi quy tuyến tính mẫu của Y theo X và dự đoán chỉ tiêu Y của sản phẩm khi chỉ tiêu X của sản phẩm đó là 25 kg. Y X  2  6  10  14   1 – 6  8  12     6 – 11   22  34    11 – 16    19  24   16 – 21     15   2 Bài 1: (2 điểm) Trọng lượng các bao gạo có phân phối chuẩn, kỳ vọng 50kg. Trung bình trong 1000 bao gạo có 200 bao có trọng lượng trong khoảng (50 kg; 52 kg ). Hãy ước lượng số bao gạo có trọng lượng trong khoảng (49 kg; 50 kg) trong 750 bao gạo. Bài 2: (3 điểm) Một hộp 8 bi xanh, 4 bi đỏ. Lấy 3 bi. Gọi X là số bi đỏ và Y là số bi xanh lấy được. Tính cov(X, Y) và hệ số tương quan của X,Y. Bài 3: (2 điểm) Khảo sát chiều cao nam thanh niên trưởng thành ở một địa phương vào các năm 1990 và 2000 người ta được số liệu sau: Chiều cao  1,60  1,65  1,70  1,75  1,80   Số người (1990)  20  25  35  15  5   Số người (2000)  15  20  40  20  5   Với mức ý nghĩa 5%, có thể kết luận chiều cao của nam thanh niên trưởng thành đã tăng không? Bài 4: (1 điểm) Một kho hàng có 1.000.000 sản phẩm. Người ta lấy mẫu 100 sản phẩm thì thấy có 20 phế phẩm. Hãy ước lượng số phế phẩm trong kho với độ tin cậy 0,97. Bài 5: (2 điểm) Cho bảng tương quan     X       1  2  3  4  5    1  1       Y  2  2  3  3      3   2  2  2  1    4   1  1  1  1   Hãy tìm phương trình đường hồi qui tuyến tính mẫu của Y theo X. 3 Bài 1.(2 điểm) Một kiện sách có 15% số sách do nhà xuất bản A xuất bản, 30% số sách do nhà xuất bản B xuất bản, 20 % số sách do nhà xuất bản C xuất bản và 35% do nhà xuất bản D xuất bản. Tỉ lệ sách bị lỗi in ấn trong các sách của nhà xuất bản A là 10%, của nhà xuất bản B là 5% , của nhà xuất bản C là 6% và trong các sách của nhà xuất bản D là 1%. Chọn ngẫu nhiên một cuốn sách trong kiện hàng đó. Tính xác suất để sách chọn ra là sách của nhà xuất bản A xuất bản bị lỗi. Biết sách chọn ra là sách bị lỗi. Tính xác suất để cuốn sách đó là của nhà xuất bản C. Bài 2.(3 điểm) Một phòng đọc chỉ có 2 mảng sách: sách về Văn học và sách về Khoa học Kỹ thuật. Mỗi người đọc vào phòng chỉ được mượn đọc tại chỗ một cuốn sách. Xác suất để một người đọc ngẫu nhiên chọn mượn sách về Khoa học kỹ thuật là 40%. Có 3 người vào mượn sách ở phòng đọc. Gọi X là số người chọn mượn sách về Khoa học kỹ thuật . Hãy lập bảng phân phối xác suất của X. Giả sử có 10 người đọc vào phòng mượn sách. Tìm xác suất để trong đó có ít nhất 2 người mượn sách về Khoa học kỹ thuật. Bài 3.( 5 điểm) Giả sử thu nhập của người lao động trong cùng một ngành và ở cùng một khu vực là đại lượng ngẫu nhiên có phân phối chuẩn. Điều tra ngẫu nhiên thu nhập trong năm của 100 người làm việc trong ngành G ở một vùng, ta có bảng số liệu sau: Mức thu nhập ( triệu đồng/năm)  30-35  35-40  40-45  45-50  50-55  55-60  60-65   Số người tương ứng  4  13  18  27  22  13  3   Hãy tìm khoảng ước lượng cho thu nhập trung bình của người lao động trong ngành G với độ tin cậy 95% . Nếu muốn độ chính xác ( trong ước lượng thu nhập trung bình của người lao động không quá 1 ( triệu đồng/năm) thì ta cần khảo sát bao nhiêu người nữa ? Những người có thu nhập trên 50 triệu đồng / 1 năm là những người có thu nhập cao. Theo một báo cáo năm trước của ngành thì tỉ lệ những người có thu nhập cao ở vùng này là 30%. Với mức ý nghĩa 3% , hãy cho biết tỉ lệ người có thu nhập cao có phải đã thay đổi không ? 4 Bài 1 : (3 điểm) Tung một con xúc xắc 3 lần. Tìm xác suất để cả 3 lần được mặt 6 chấm. Tìm xác suất để có ít nhất 2 lần được mặt 6 chấm. Nếu tung con xúc sắc 100 lần thì xác suất để có từ 50 đến 90 lần được mặt 6 chấm là bao nhiêu? Bài 2. (2 điểm) Một thùng gồm 10 cuốn sách, trong đó có 3 cuốn sách Vật lý và 7 cuốn sách Toán học. Lấy ngẫu nhiên 4 cuốn sách bày làm mẫu (không bán) còn lại đem ra cửa hàng bày bán. Hãy lập bảng phân phối xác suất cho số sách Toán học có trong các sản phẩm bày bán. Bài 3.( 5 điểm) Nhà trường muốn đánh giá số giờ tự học của sinh viên trong tuần. Để biết điều này, người ta khảo sát ngẫu nhiên 25 sinh viên và có kết quả về số giờ tự học của các sinh viên này như sau: 9 8 7 6 7 8 9 4 7 6 6 2 2 6 4 11 5 4 3 7 8 8 7 8 6 Hãy ước lượng số giờ tự học trung bình của sinh viên trong tuần với độ tin cậy 95%? ( Giả thiết số giờ tự học của sinh viên trong tuần tuân theo luật phân phối chuẩn). Một báo cáo trước đây cho rằng số giờ tự học trung bình của sinh viên trong tuần là 8 giờ. Với mức ý nghĩa 5%, hãy so sánh kết quả mới điều tra này với kết quả trước đó ? 5 Câu I: ( 3 điểm). Có 2 chuồng vịt ở cạnh nhau. Chuồng thứ I có 5 con trống và 5 con mái; chuồng thứ II có 8 con trống và 2 con mái. Bắt ngẫu nhiên từ mỗi chuồng ra 1 con. Tính xác suất để trong hai con bắt ra có 1 con trống . Chọn ngẫu nhiên 1 chuồng rồi từ chuồng đó bắt ra 1 con. Tính xác suất để con bắt ra là trống. Có 1 con từ chuồng I chạy sang chuồng II. Người ta bắt 1 con ở chuồng II để bỏ trở lại chuồng I. Tính xác suất để con bắt ra từ chuồng II là trống. Câu II: ( 1 điểm). Một thủ kho có một chùm chìa khóa gồm 5 chìa bề ngoài giống nhau, trong đó chỉ có 1 chìa mở được cửa kho. Thủ kho thử lần lượt ngẫu nhiên từng chìa (chìa nào mở không được thì bỏ ra) cho đến khi mở được cửa kho thì thôi. Gọi X là số lần thử. Tìm luật phân phối của X. Câu III: ( 1 điểm). Một người nuôi 50 con gà đẻ. Xác suất để một con gà đẻ trứng trong ngày là 70%. Tính xác suất để trong 1 ngày thu được ít nhất 40 trứng. Câu IV: ( 5 điểm) Khảo sát về thu nhập của một số người ở công ty người ta thu được số liệu sau: Thu nhập (triệu đồng/năm)  8-12  12-14  14-16  16-18  18-20  20-24  24-30   Số người  8  12  20  25  20  10  5   Những người có thu nhập trên 20 triệu đồng/năm được coi là những người có thu nhập cao. Hãy ước lượng số người có thu nhập cao ở công ty này với độ tin cậy 98% (biết tổng số người làm việc ở công ty này là 2000 người). Nếu công ty báo cáo mức thu nhập bình quân của một người là 15,6 triệu đồng/ năm thì có chấp nhận được không với mức ý nghĩa 3%. Nếu muốn dùng mẫu trên để ước lượng thu nhập trung bình của một người trong công ty với độ chính xác 600.000 đồng/năm thì độ tin cậy của ước lượng là bao nhiêu? 6 Câu I: ( 3 điểm) Trong moät giaûng ñöôøng coù 3 lôùp hoïc chung : lôùp A coù 25 sinh vieân trong ñoù coù 15 sinh vieân nöõ, lôùp B coù 40 sinh vieân trong ñoù coù 24 nöõ, lôùp C coù 50 sinh vieân trong ñoù coù 30 nöõ. 1) Goïi ngaãu nhieân moät sinh vieân trong lôùp leân giaûi baøi taäp. Tính xaùc suaát ñeå: Sinh vieân naøy laø nöõ sinh vieân lôùp A; Sinh vieân naøy laø sinh vieân lôùp A hay lớp C; 2) Goïi ngaãu nhieân 5 sinh vieân trong lôùp leân giaûi baøi taäp. Tính xaùc suaát ñeå trong 5 sinh vieân naøy coù ít nhất 3 sinh vieân laø nöõ. Câu II: ( 2 điểm) Coù 3 maùy tự động, tæ leä saûn phaåm hoûng do 3 maùy naøy saûn xuaát ra laàn löôït laø: 2%, 3%, 5%. Cho moãi maùy saûn suaát ra 1 saûn phaåm. Laäp luaät phaân phoái cuûa soá saûn phaåm hoûng trong 3 saûn phaåm thu ñöôïc. Tìm soá saûn phaåm hoûng tin chaéc nhaát, soá saûn phaåm hoûng trung bình, phöông sai cuûa soá saûn phaåm hoûng trong 3 sản phẩm. Câu III: (5 điểm) Quan saùt soá gaïo baùn ra trong moät ngaøy cuûa moät cöûa haøng baùn gaïo sau moät thôøi gian, ngöôøi ta ghi ñöôïc soá lieäu sau Soá gaïo (taï)  12  13  15  16  17  18  19   Soá ngaøy  3  2  7  7  3  2  1   a) Giaû söû nhöõng ngaøy baùn ñöôïc töø 13 taï ñeán 17 taï laø nhöõng ngaøy “bình thöôøng”. Haõy öôùc löôïng tæ leä ngaøy bình thöôøng cuûa cöûa haøng ôû ñoä tin caäy 99% ? b) Sau khi tính toaùn, oâng chuû cöûa haøng noùi raèng neáu trung bình moät ngaøy baùn khoâng ñöôïc 15 taï gaïo thì chaúng thaø ñoùng cöûa coøn hôn. Döïa vaøo soá lieäu treân, baïn haõy keát luaän giuùp oâng chuû cöûa haøng xem coù neân tieáp tuïc baùn hay khoâng ôû möùc yù nghóa 0,05? (Giaû thieát raèng soá gaïo baùn ra trong ngaøy coù phaân phoái chuaån) 7 Câu 1: ( 2 điểm) Xác suất để một sản phẩm sau khi sản suất không được kiểm tra chất lượng là 20%. Tính xác suất để trong 400 sản phẩm sản suất ra có từ 70 đến 100 sản phẩm không được kiểm tra. Câu 2: ( 3 điểm) Coù 2 beå caù kieång: Beå 1 coù 10 con caù maøu vaøng, 6 con caù maøu xanh vaø 4 con caù maøu ñoû; Beå 2 coù 15 con caù maøu vaøng, 12 con caù maøu xanh vaø 8 con caù maøu ñoû. 1) Töø moãi beå vôùt ra moät con caù. Tìm xaùc suaát ñeå ñöôïc 2 con cuøng maøu. 2) Töø beå 1 vôùt ra moät con caù, töø beå 2 vôùt ra 2 con. Tìm xaùc suaát ñeå trong 3 con caù vôùt ra coù ñuùng 1 con coù maøu ñoû. 3) Vôùt moät con töø beå 1 boû qua beå 2 roài töø beå 2 vôùt ngaãu nhieân moät con. Tính xaùc suaát ñeå con caù vôùt ra töø beå 2 laø con caù maøu vaøng. Câu 3: ( 5 điểm) Một công ty sản xuất bột giặt muốn thăm dò mức độ tiêu thụ sản phẩm bột giặt trong một khu dân cư A. Công ty tiến hành khảo sát 500 hộ gia đình và kết quả cho trong bảng sau: Nhu cầu Kg/tháng  0,5-1  1-1,5  1,5-2  2-2,5  2,5-3  3-3,5  3,5-4   Số hộ  21  147  192  78  34  16  12   Biết rằng khu A có 5000 hộ gia đình. 1) Hãy ước lượng nhu cầu bột giặt trung bình của khu A trong 1 năm với độ tin cậy 95%. 2) Những hộ có nhu cầu trên 2 kg trong 1 tháng được xem là những hộ có nhu cầu cao. Hãy ước lượng tỉ lệ những hộ có nhu cầu cao với độ tin cậy 95%. 3) Để ước lượng nhu cầu bột giặt trung bình của một hộ trong 1 tháng với độ chính xác 0,05kg và độ tin cậy 95% thì cần điều tra thêm bao nhiêu hộ gia đình nữa? 8 Câu 1: ( 2 điểm ) Một hộp chứa ba bi đỏ, hai bi xanh. Rút ngẫu nhiên một bi lần thứ nhất . Tính xác suất để rút được bi đỏ. Nếu lần thứ nhất rút được bi đỏ thì bỏ lại viên bi vào hộp và lần thứ hai rút từ hộp ra hai viên bi. Nếu lần thứ nhất rút được bi xanh thì ta cũng bỏ lại vào hộp và rút ra ba viên bi ở lần thứ hai. Gọi X là số bi xanh rút được trong lần thứ hai. Lập bảng phân phối của X. Câu 2: ( 2 điểm ) Một xe tải vận chuyển 9000 chai rượu vào kho. Xác suất để mỗi chai bị vỡ là 0,0015. Tính xác suất để có 15 chai bị vỡ. Câu 3: ( 3 điểm ) Điểm trung bình môn Toán của sinh viên trong năm học trước là 6,7. Năm nay, theo dõi điểm của ngẫu nhiên 50 sinh viên , ta được số liệu: Điểm  4  5  6  7  8   Số sinh viên  8  15  17  8  2   Với mức ý nghĩa 5%, có thể kết luận điểm trung bình năm nay cao hơn năm trước không? Bài 4 ( 3 điểm ) Để điều tra số cá trong hồ, người ta bắt 200 con đánh dấu rồi thả xuống hồ. Lần thứ hai bắt 300 con thấy 50 con có dấu. Hãy ước lượng số cá trong hồ với độ tin cậy 0,95 . 9 Câu 1. ( 2,5 điểm) Ba kiện hàng đều có 20 sản phẩm với số sản phẩm tốt tương ứng là 15, 12 và 10. Lấy ngẫu nhiên 1 kiện hàng (khả năng như nhau), rồi từ kiện hàng đó chọn ngẫu nhiên ra 1 sản phẩm. Tính xác suất sản phẩm chọn ra là tốt. Giả sử sản phẩm chọn ra không tốt, tính xác suất sản phẩm này thuộc kiện thứ ba. Câu 2. (2,5 điểm) Tuổi thọ X (đơn vị: tháng) của một loại côn trùng nào đó là một đại lượng ngẫu nhiên có hàm mật độ :  Tìm hệ số k và tuổi thọ trung bình của côn trùng đó. Tìm xác suất để côn trùng chết trước khi nó được 1 tháng tuổi. Câu 3. (5 điểm) Quan sát chiều cao Y (cm) và độ tuổi X (năm) của 1 số thanh thiếu niên, ta có bảng số liệu: X Y  15  17  19  21  23   145 – 150  8       150 – 155  12  11      155 – 160   16  8  6    160 – 165  2   10  15    165 – 170    12  4  7   170 – 175      10   a) Hãy ước lượng chiều cao trung bình của những người 21 tuổi với độ tin cậy 99%. b) Những người cao hơn 1,65m là người “khá cao”. Hãy ước lượng tỉ lệ và chiều cao trung bình của những người “khá cao” với độ tin cậy 95%? c) Một tài liệu cũ nói rằng chiều cao trung bình của thanh thiếu niên trong độ tuổi trên là 158,5cm. Hãy cho kết luận về tài liệu này với mức ý nghĩa 5%? d) Lập phương trình đường hồi quy tuyến tính mẫu của Y theo X. Dự đoán xem nếu người 20 tuổi thì cao khoảng bao nhiêu? 10 Câu 1. ( 2,5 điểm) Có hai hộp bi. Hộp Một có 4 bi trắng, 3 bi xanh. Hộp Hai có 5 bi trắng 2 bi xanh. Lấy từ mỗi hộp 1 bi bỏ đi. Sau đó đổ chung số bi còn lại của 2 hộp vào hộp trống Ba. Từ hộp Ba lấy ra một bi. Tính xác suất để lấy được bi trắng từ hộp Ba. Câu 2. ( 2,5 điểm) Một người vào cửa hàng thấy có 5 chiếc tivi giống nhau. Anh ta đề nghị được thử lần lượt từng chiếc đến khi chọn được tivi tốt thì mua và nếu cả 5 lần thử đều xấu thì không mua. Gọi X là số lần thử. Biết xác suất 1 tivi xấu là 0,3. a) Tính xác suất người này mua được tivi; b) Lập bảng và hàm phân phối xác suất của X. Câu 3. ( 5 điểm) Để nghiên cứu sự phát triển của 1 loại cây làm giấy, người ta tiến hành đo ngẫu nhiên đường kính X(cm) và chiều cao Y(m) của một số cây được bảng số liệu: Y X  2  3  4  5  6  7   20  3  5       22   2  10      24   3  8  14  10    26    4  16  7    28      8  13   a) Những cây cao 6m trở lên là cây loại 1. Hãy ước lượng tỉ lệ cây loại 1 với độ tin cậy 89%. b) Hãy ước lượng đường kính trung bình của cây loại 1 với độ tin cậy 98%. c) Trước đây, chiều cao trung bình của loại cây này là 5,1m. Số liệu trên lấy ở những cây đã được áp dụng kỹ thuật chăm sóc mới. Với mức ý nghĩa 5%, hãy cho nhận xét về tác dụng của kỹ thuật mới này? d) Lập phương trình đường hồi quy tuyến tính mẫu Y theo X. Dự đoán xem nếu cây có đường kính 25cm thì cao cỡ bao nhiêu m? 11 Câu 1. ( 3 điểm) Theo thống kê của một công ty chuyên cung cấp thực phẩm tại địa phương, có 50% khách hàng lựa chọn thanh toán các hóa đơn qua dịch vụ thu tiền tại nhà, 40% khách hàng lựa chọn thanh toán qua chuyển khoản và 10% khách hàng thanh toán trực tiếp tại công ty. Tỷ lệ khách hàng thanh toán đúng hạn sau mỗi tuần đối với từng hình thức lựa chọn trên là 80%, 90% và 50%. Tính tỉ lệ khách hàng của công ty thanh toán đúng hạn. Tính xác suất trong 120 khách hàng có ít nhất 100 khách hàng thanh toán đúng hạn. Chọn ngẫu nhiên một khách hàng của công ty. Nếu khách hàng đã thanh toán hóa đơn đúng hạn thì xác suất khách hàng đó đang sử dụng dịch vụ thu tiền tại nhà là bao nhiêu? Câu 2. ( 2 điểm) Một lô hàng gồm 15 sản phẩm loại I và 25 sản phẩm loại II. Lấy ngẫu nhiên cùng một lúc 4 sản phẩm để kiểm tra. Tính xác suất để trong 5 sản phẩm lấy ra có đúng 3 sản phẩm loại I. Gọi X là số sản phẩm loại II có trong 5 sản phẩm lấy ra, hãy lập bảng phân phối xác suất của X, tính  và . Câu 3. (5 điểm) Với câu hỏi “Có nên xem quảng cáo với thời gian dài quá hai phút trong các chương trình chiếu phim hay không”, có 40 người đàn ông trong một mẫu ngẫu nhiên 90 người đàn ông trả lời “nên”. Từ một mẫu ngẫu nhiên 110 người phụ nữ được chọn ra có 60 người trả lời “nên”. Với mức ý nghĩa 5% có thể coi các tỷ lệ trả lời “nên” giữa hai giới đàn ông và phụ nữ là như nhau không? Với độ tin cậy 90% có thể coi tỷ lệ trả lời “nên” của phụ nữ nằm trong khoảng nào? 12 Câu 1. ( 5 điểm) Một người bán hàng thực hiện phương thức bán hàng theo các bước sau: Bước 1: Giao dịch với khách hàng trên điện thoại; Bước 2: Giao dịch với khách hàng tại nhà nếu giao dịch trên điện thoại thành công. Kinh nghiệm cho thấy rằng 20% các cuộc giao dịch với khách hàng trên điện thoại ở bước 1 sẽ dẫn tới việc giao dịch với khách hàng tại nhà ở bước 2. Giả sử người bán hàng thực hiện 400 cuộc giao dịch trên điện thoại, hãy tính xác suất để có từ 75 tới 85 cuộc giao dịch tại nhà với khách hàng. Người bán hàng cần thực hiện bao nhiêu cuộc giao dịch với khách hàng trên điện thoại để với xác suất 95% có thể tin rằng sẽ có không dưới 80 cuộc giao dịch tại nhà với khách hàng. Câu 2. ( 5 điểm) Người ta chọn 10 ô đất để làm thí nghiệm so sánh năng suất hai giống lúa A và B. Mỗi ô được chia thành hai phần bằng nhau, mỗi phần 4m2 và được trồng một giống lúa. Kết quả sản lượng (kg) của các ô như sau: Ô số  1  2  3  4  5  6  7  8  9  10   Sản lượng giống A  1,55  1,4  1,35  1,6  1,65  1,7  1,5  1,45  1,3  1,75   Sản lượng giống B  1,65  1,5  1,4  1,5  1,6  1,7  1,55  1,4  1,45  1,6   Giả sử năng suất của các giống lúa tuân theo luật phân phối chuẩn. Với mức ý nghĩa 5% có thể coi các giống lúa có năng suất như nhau không? Tìm khoảng tin cậy 96% cho năng suất giống lúa B (tạ/ha). 13 Câu 1: ( 2 điểm ) Một hộp có 2 bi xanh, 3 bi trắng và 4 bi đỏ cùng cỡ. Lấy ngẫu nhiên lần lượt từng viên bi ( không hoàn lại ), cho đến khi được bi đỏ thì dừng. a) Tìm xác suất có 2 bi trắng và một bi xanh được lấy ra. b) Gọi X là biến ngẫu nhiên chỉ số bi xanh đã được lấy ra. Hãy lập bảng phân phối xác suất cuả X.. Câu 2: ( 1,5 điểm ) Một nhân viên mỗi ngày đi chào hàng ở 5 nơi với xác suất bán được hàng ở mỗi nơi là 0,2 . Trong một tháng người ấy đi chào hàng 20 ngày. Giả sử mỗi lần bán được hàng tại một địa điểm , người chào hàng được thưởng 150.000 đồng. Tìm số tiền trung bình mà nhân viên đó được thưởng trong một tháng. Câu 3: ( 2 điểm ) Biết tuổi thọ của một loại thiết bị điện là biến ngẫu nhiên phân phối chuẩn với kỳ vọng là 1500 giờ và độ lệch chuẩn là 150 giờ. Thời hạn bảo hành cho thiết bị là 1200 giờ. Tìm tỉ lệ sản phẩm phải bảo hành. Một người mua lại một thiết bị điện cùng loại đã qua sử dụng 1300 giờ mà chưa phải sửa chữa gì. Hãy cho biết khả năng thiết bị đó vẫn hoạt động tốt trong 400 giờ tiếp theo là bao nhiêu ?
Tài liệu liên quan