Định lý 1: Cho X là không gian vectơ n chiều (dimX=n), E={e1, e2, ..., en} là một
cơ sở của X; Y là không gian vectơ tùy ý và b1, b2,..., bn là hệ các vectơ tùy ý trong
Y. Khi đó tồn tại duy nhất một ánh xạ tuyến tính f : X -> Y thỏa mãn
f(ei ) = bi , với mọi i =1, 2,.., n.
Từ định lý trên ta thấy rằng một ánh xạ tuyến tính hoàn toàn được xác định nếu như
ta biết được ảnh của một cơ sở của nó. Và để cho một ánh xạ ta chỉ cần cho ảnh của
một cơ sở là đủ.
19 trang |
Chia sẻ: lylyngoc | Lượt xem: 16668 | Lượt tải: 2
Bạn đang xem nội dung tài liệu Giá trị riêng – vectơ riêng – chéo hóa ma trận, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chương 5. GIÁ TRỊ RIÊNG – VECTƠ RIÊNG – CHÉO HÓA MA
TRẬN
5.1. Trị riêng – vectơ riêng
5.2. Chéo hóa ánh xạ tuyến tính, chéo hóa ma trận
5.3. Ánh xạ tự liên hợp và chéo hóa ma trận đối xứng thực
I. ÁNH XẠ TUYẾN TÍNH
1. Định nghĩa và ví dụ.
1.1. Định nghĩa: Cho X, Y là hai K- không gian vectơ. Ánh xạ f : X Y là ánh xạ
tuyến tính nếu f thỏa mãn 2 điều kiện:
1) f(a + b) = f(a) + f(b) a,b X
2) f(αa) = αf(a) a X, α K
Chú ý: Các điều kiện 1 và 2 tương đương điều kiện sau:
3) f(αa +βb) = αf(a) βf (b) a,b X, α,β K
Một ánh xạ tuyến tính f : X X được gọi là một phép biến đổi tuyến tính của X.
Như vậy muốn chứng minh f là một ánh xạ tuyến tính thì ta cần kiểm tra điều kiện 1
và 2 hoặc 3.
1.2. Các ví dụ.
1. Ánh xạ không
O : X Y
a O(a) θ
là ánh xạ tuyến tính.
2. Ánh xạ đồng nhất
id : X Y
a id(a) a
là ánh xạ tuyến tính.
3. Ánh xạ
2
1 2 1 2 1 2
f : R R
(x ,x ) f (x , x ) x 3x
là ánh xạ tuyến tính.
Chứng minh:
21 2 1 2x (x ,x ), y (y , y ) R , ta có
1 1 2 2
1 1 2 2
1 2 1 2
f (x y) f (x y ,x y )
(x y ) 3(x y )
(x 3x ) (y 3y ) f (x) f (y)
21 2x (x ,x ) R , α R , ta có
1 2 1 2
1 2
f (αx) f (αx ,αx ) αx 3αx
α(x 3x ) αf (x)
1.3. Các tính chất cơ bản của ánh xạ tuyến tính.
Cho X, Y là hai K- không gian vectơ, f : X Y là ánh xạ tuyến, khi đó
1. x yf (θ ) θ
2. f (a) f (a)
3. 1 2 n 1 2 na ,a ,...,a X, α ,α ,...,α K ta có
1 1 2 2 n n 1 1 2 2 n nf (α a α a ... α a ) α f (a ) α f (a ) ... α f (a )
4. Ánh xạ tuyến tính biến một hệ phụ thuộc tuyến tính thành một hệ phụ
thuộc tuyến tính.
5. Ánh xạ tuyến tính không làm tăng hạn của một hệ vectơ.
2. Ma trận của ánh xạ tuyến tính.
2.1. Định lý cơ bản về sự xác định của ánh xạ tuyến tính.
Định lý 1: Cho X là không gian vectơ n chiều (dimX=n), E={e1, e2,…, en} là một
cơ sở của X; Y là không gian vectơ tùy ý và b1, b2,…, bn là hệ các vectơ tùy ý trong
Y. Khi đó tồn tại duy nhất một ánh xạ tuyến tính f : X Y thỏa mãn
i if(e ) b , i 1,2,...,n.
Từ định lý trên ta thấy rằng một ánh xạ tuyến tính hoàn toàn được xác định nếu như
ta biết được ảnh của một cơ sở của nó. Và để cho một ánh xạ ta chỉ cần cho ảnh của
một cơ sở là đủ.
2.2. Ma trận của ánh xạ tuyến tính.
Giả sử X, Y là hai K- không gian vectơ, dimX=n, dimY=m và ánh xạ tuyến tính
f : X Y . Giả sử E={e1, e2,…, en} - cơ sở của X, F={f1, f2,…, fm} - cơ sở của Y.
Vì if(e ) Y nên f(ei) biểu thị tuyến tính được qua hệ các vectơ của F. Ta có
1 11 1 12 2 1m mf (e ) a f a f ... a f
2 21 1 22 2 2m mf (e ) a f a f ... a f
…
n n1 1 n2 2 nm mf (e ) a f a f ... a f
Ma trận
11 21 n1
12 22 n2
1m 2m nm
a a a
a a a
A =
a a a
gọi là ma trận của ánh xạ tuyến tính f trong cặp cơ sở E, F. Ta kí hiệu A=Af/E,F .
Trường hợp đặc biệt khi f là phép biến đổi tuyến tính của X, f : X X và
F E thì ma trận của ánh xạ tuyến tính f trong cặp cơ sở E, E được gọi là ma trận
của f trong cơ sở E và kí hiệu là Af/E .
Định lý 2: Hạng của ánh xạ tuyến tính f bằng hạng của ma trận A của nó:
rankf r(A).
Ví dụ 1: Cho ánh xạ tuyến tính 2 3f : R R
1 2 1 2 1 2 2f (x , x ) (x 2x ,x x , x )
Tìm ma trận của ánh xạ tuyến tính f trong cặp cơ sở E, F với các cơ sở E, F cho
như sau:
E={e1=(1,1), e2=(1,0)}, F={f1=(1,1,1), f2=(-1,2,1),f3=(1,3,2)}.
Giải: Ta có
1 1 1 2 2 3 3f (e ) a f a f a f (3,0, 1) (1)
2 1 1 2 2 3 3f (e ) b f b f b f (1,1,0) (2)
Theo định nghĩa thì ma trận của ánh xạ tuyến tính f đối với cặp cơ sở E, F là
1 1
f /E,F 2 2
3 3
a b
A a b
a b
.
Giải các phương trình (1) và (2) để tìm a1, a2, a3 và b1, b2, b3. Các phương trình (1), (2)
tương đương với các hệ phương trình tuyến tính có ma trận bổ sung tương ứng như sau:
2 2 3 3 3 22 2 1
3 3 1
h h h h h 2hh h h
h h h
1 1 1 3 1 1 1 1 3 1 1 1 1 3 1
1 2 3 0 1 0 3 2 3 0 0 1 1 1 1
1 1 3 1 0 0 2 1 4 1 0 2 1 4 1
1 1 1 3 1
0 1 1 1 1
0 0 1 6 3
Hệ (1): a3=6; a2=1- a3=-5; a1=3- a3+ a2=-8
Hệ (2): b3=3; b2=1- b3=-2; b1=1- b3+ b2=-4
Vậy
1 1
f /E,F 2 2
3 3
a b 8 4
A a b 5 2
a b 6 3
.
Bài tập: Cho ánh xạ tuyến tính 3 3f : R R
1 2 3 1 2 3 2 3 1 2 3f (x , x ,x ) (x 2x x ,x x ,x x 2x )
Tìm ma trận của f đối với cơ sở chính tắc.
2.3. Biểu thức tọa độ của ánh xạ tuyến tính.
Cho X, Y là hai K- không gian vectơ, dimX=n, dimY=m, E={e1, e2,…, en} - cơ sở của
X, F={f1, f2,…, fm} - cơ sở của Y. Cho f : X Y là ánh xạ tuyến tính. Đặt A=Af/E,F -
là ma trận của f trong cặp cơ sở E, F.
x E, giả sử
1 1
2 2
E F
n n
x y
x y
[x] , [f(x)]
x y
Khi đó công thức sau gọi là biểu thức tọa độ của ánh xạ tuyến tính f
1 1
2 2
n n
y x
y x
A
y x
.
2.4. Ma trận của ánh xạ tuyến tính trong các cơ sở khác nhau.
Cho X, Y là hai K- không gian vectơ, dimX = n, dimY = m, E={e1, e2,…, en},
' ' ' '
1 2 nE {e ,e ,...,e } - hai cơ sở của X, F={f1, f2,…, fm},
' ' ' '
1 2 nF {f ,f ,..., f } - hai cơ sở của
Y. Cho ánh xạ tuyến tính f : X Y , khi đó ta có công thức liên hệ giữa ma trận của f
trong cặp cơ sở E’, F’ với ma trận của f trong cơ sở E, F như sau:
' ' ' '
1
f /E,Ff /E ,F FF EE
A T .A .T ,
trong đó 'EET là ma trận chuyển cơ sở từ E sang E
’.
Nếu f : X X là phép biến đổi tuyến tính và E={e1, e2,…, en}, ' ' ' '1 2 nE {e ,e ,...,e } - hai
cơ sở của X, ta có
' ' '
1
f /Ef /E EE EE
A T .A .T
3. Hạt nhân và ảnh của ánh xạ tuyến tính.
3.1. Định nghĩa, tính chất, định lý.
Định nghĩa: Cho X, Y là hai K- không gian vectơ (không gian tuyến tính),
f : X Y là ánh xạ tuyến tính (axtt)
Kí hiệu Kerf {x X | f (x) θ} gọi là hạt nhân của axtt f.
Kí hiệu Imf f (X) {f (x) | x X} gọi là ảnh của axtt f.
Tính chất: Cho f : X Y là axtt, khi đó
a) Kerf là không gian con của X.
b) Imf là không gian con của X.
c) Nếu dimX = n thì dimImf + dimKerf = dimX = n.
Định lý 3: Hạng của axtt f là số chiều của Imf : rankf = dimImf
3.2. Cách tìm hạt nhân và ảnh.
Cho ánh xạ tuyến tính f : X Y , dimX = n, dimY = m.
3.2.1. Cách tìm hạt nhân.
Chọn E={e1, e2,…, en} là một cơ sở của X, F={f1, f2,…, fm} là một cơ sở của Y.
Ta có: F E[f(x)] A[x] . Theo định nghĩa:
F
E
x Kerf f (x) θ
[f(x)] θ
A[x] θ ( )
Như vậy x Kerf khi và chỉ khi tọa độ của x trong cơ sở E là nghiệm của hệ phương
trình thuần nhất (*). Từ đó để tìm Kerf ta làm như sau:
1. Tìm A=Af/E,F – ma trận của f đối với cơ sở E, F.
2. Giải hệ phương trình thuần nhất
1
2
n
x 0
x 0
A
x 0
.
3. Kerf là tập tất cả các vectơ có tọa độ trong cơ sở E là nghiệm của (*). Hệ nghiệm
cơ bản của (*) chính là cơ sở của Kerf trong cơ sở E.
Chú ý: Ta thường lấy E, F là cơ sở chính tắc của X, Y.
3.2.3. Cách tìm ảnh.
Vì e1, e2,…, en là hệ sinh của X nên f(e1), f(e2),…, f(en) là hệ sinh của Imf, hay
Imf = span{ f(e1), f(e2),…, f(en)}. Ta tìm một hệ con độc lập tuyến tính (đltt) tối đại của
f(e1), f(e2),…, f(en), đó là cơ sở của Imf (Số vectơ đltt tối đại bằng hạng của các vectơ
f(e1), f(e2),…, f(en)).
Ví dụ 2: Cho axtt 3 3f : R R
1 2 3 1 2 3 2 3 1 2 3f (x ,x ,x ) (x 2x x , x x ,x x 2x ) .
a) Tìm Kerf, cơ sở Kerf và dimKerf.
b) Tìm cơ sở của Imf và dimImf.
Giải: a) 1 2 3 1 2 3 1 2 3(x ,x , x ) Kerf f (x ,x ,x ) θ (x , x ,x ) là nghiệm của hệ pt:
1 2 3
2 3
1 2 3
x 2x x 0
x x 0
x x 2x 0
.
Ta biến đổi ma trận hệ số:
3 3 2 3 3 2h h h h h h
1 2 1 1 2 1 1 2 1
0 1 1 0 1 1 0 1 1
1 1 2 0 1 1 0 0 0
.
3
2
1
x t
x t , t R
x 3t
Vậy:
3Kerf {x R | x t(3, 1,1), t R}
{(3,-1,1)} là cơ sở của Kerf và dimKerf =1.
b) Ta tìm ảnh của f đối với cơ sở chính tắc E={e1=(1,0,0), e2=(0,1,0), e3=(0,0,1)}.
Ta có: f(e1)=(1,0,1), f(e2)=(2,1,1), f(e3)=(-1,1,-2),
Imf = span{f(e1), f(e2), f(e3)}.
Tìm hệ con đltt cực đại của hệ {f(e1), f(e2), f(e3)} bằng cách tìm hạng của nó:
3 3 22 2 1
3 3 1
h h hh h 2h
h h h
1 0 1 1 0 1 1 0 1
2 1 1 0 1 1 0 1 1
1 1 2 0 1 1 0 0 0
.
Vậy cơ sở của Imf là {f(e1), f(e2)} và dimImf =2.
Chú ý: Trong trường hợp này ta cũng hiểu rằng Imf = span{f(e1), f(e2)}. Nếu hạng của
hệ {f(e1), f(e2), f(e3)} bằng 3 thì ta có Imf = 3R (?).
4. Đơn cấu, toàn cấu, đẳng cấu.
4.1. Các định nghĩa.
Cho f : X Y là axtt, khi đó
f gọi là đơn cấu nếu f đơn ánh.
f gọi là toàn cấu nếu f toàn ánh.
f gọi là đẳng cấu nếu f song ánh.
4.2. Các định lý.
Định lý 4: Cho f : X Y là axtt, khi đó
1) f đơn cấu Kerf {θ}
2) f toàn cấu Imf Y
Định lý 5: Cho X, Y là các không gian tuyến tính hữu hạn chiều và axtt f : X Y . Khi
đó f là đẳng cấu khi và chỉ khi dimX = dimY.
II. GIÁ TRỊ RIÊNG – VECTƠ RIÊNG – CHÉO HÓA MA TRẬN, ÁNH XẠ
TUYẾN TÍNH
1. Giá trị riêng, vectơ riêng của ma trận, ánh xạ tuyến tính.
1.1. Giá trị riêng, giá trị riêng của ma trận.
1.1.1. Các định nghĩa.
Định nghĩa 1: Số λ K gọi là giá trị riêng (GTR) của A nếu tồn tại
vectơ τ n1 2 nx (x ,x ,..., x ) K ,x θ sao cho:
1 1
2 2
n n
x x
x x
Ax λx ( ) (A λ ).
x x
Khi đó vectơ x gọi là vectơ riêng (VTR) của A ứng với GTR λ .
Nhận xét: Từ ( ) ta có: (A λI)x θ (x θ).
Định nghĩa 2: Cho ij nA (a ) M (K), λ K.
a) Đa thức
11 21 n1
12 22 n2
A
1n 2n nn
a λ a a
a a λ a
P (λ) det(A λI)
a a a λ
gọi là đa thức đặc trưng của A.
b) Phương trình
AP (λ) 0
gọi là phương trình đặc trưng của A.
Định nghĩa 3: Tập hợp tất cả các VTR của A ứng với GTR λ và bổ sung vectơ θ gọi
là không gian riêng (KGR) của A ứng với GTR λ .
Nhận xét: KGR của A ứng với GTR λ là không gian nghiệm của hệ phương trinh:
(A λI)x θ.
Định nghĩa 4: Hai ma trận nA,B M (K) gọi là đồng dạng nếu tồn tại ma trận P
không suy biến (det P 0 ) sao cho:
1B P AP.
1.1.2. Tính chất.
Định lý 1: Nếu x là VTR của A ứng với GTR λ , thì αx (α 0) cũng là VTR của A
ứng với GTR λ .
Định lý 2: Hai ma trận đồng dạng có cùng GTR.
1.1.3. Cách tìm GTR, VTR của ma trận vuông A.
Ta tiến hành các bước sau:
1) Giải phương trình đặc trưng
AP (λ) det(A λI) 0 ( ) .
Nghiệm của ( ) là GTR của A.
2) Giả sử kλ là một nghiệm của ( ) . Ta giải hệ phương trình thuần nhất sau:
k(A λ I)x θ (3 ).
Nghiệm không tầm thường của (3 ) là VTR của A ứng với GTR kλ .
Chú ý: kr r(A λ I) n (vì kdet(A λ I) 0 ) nên KGR kS của A ứng với GTR
kλ (tức là không gian nghiệm kS của (3 ) ) có kdimS n r (hay nói cách khác,
KGR kS của A ứng với GTR kλ có (n r ) VTR độc lập tuyến tính).
Ví dụ 1. Tìm GTR, VTR, cơ sở của KGR và các KGR của ma trận A
a)
0 0 1
A 0 1 0
1 0 0
b)
1 4 6
A 3 7 7
4 8 7
Giải: a) Giải phương trình đặc trưng AP (λ) 0 .
Ta có:
2 2
A
λ 0 1
P (λ) 0 1 λ 0 λ (1 λ) (1 λ) (λ 1) (λ 1)
1 0 λ
.
1 1
A
2 2
λ 1 (m 1)
P (λ) 0
λ 1 (m 2)
.
1 1λ 1(m 1)
Giải hệ phương trình (A I)x θ.
3 3 1h h h
1 0 1 1 0 1
0 2 0 0 2 0
1 0 1 0 0 0
1
1 3
2
2
3
x t
x x 0
(A I)x θ x 0 , t R \ {0}.
2x 0
x t
Vậy:
- VTR của A ứng với GTR 1λ 1 có dạng:
x ( t,0, t) t( 1,0,1), t R \ {0}.
- Một cơ sở của KGR 1 1S (dimS 1) của A ứng với GTR 1λ 1 : 1a ( 1,0,1).
- KGR 31 1S span{a } {x R | x t( 1,0,1), t R}
2 2λ 1(m 2)
Giải hệ phương trình (A I)x θ.
Ta có:
3 3 1h h h
1 0 1 1 0 1
0 0 0 0 0 0
1 0 1 0 0 0
1
2 2
1 3 2
3
x t
(A I)x θ x x 0 x v, t,v R : t v 0.
x t
Vậy:
- VTR của A ứng với GTR 2λ 1 có dạng:
2 2x (t,v, t) t(1,0,1) v(0,1,0), t, v R : t v 0.
- Một cơ sở của KGR 2 2S (dimS 2) của A ứng với GTR 2λ 1 :
2 3a (1,0,1),a (0,1,0).
- KGR 32 2 3S span{a ,a } {x R |x t(1,0,1) v(0,1,0), t,v R}
b) Giải phương trình đặc trưng AP (λ) 0 .
Ta có:
2
A
1 λ 4 6
P (λ) 3 7 λ 7 (λ 1) (λ 3)
4 8 7 λ
.
1 1
A
2 2
λ 1 (m 2)
P (λ) 0
λ 3 (m 1)
.
1 1λ 1(m 2)
Giải hệ phương trình (A I)x θ.
Ta có:
1
1 1 2 2 32 2 2 1
1
3 3 1 2 33 34
h h h h 2hh h 3h
h h h h hh h
2 4 6 1 2 3 1 2 3 1 2 3
3 6 7 3 6 7 0 0 2 0 0 1
4 8 8 1 2 2 0 0 1 0 0 0
1
1 2 3
2
3
3
x 2t
x 2x x 0
(A I)x θ x t , t R \ {0}.
x 0
x 0
Vậy:
- VTR của A ứng với GTR 1λ 1 có dạng:
x ( 2t, t,0) t( 2,1,0), t R \ {0}.
- Một cơ sở của KGR 1 1S (dimS 1) của A ứng với GTR 1λ 1 : 1a ( 2,1,0).
- KGR 31 1S span{a } {x R | x t( 2,1,0), t R}
2 2λ 3 (m 1)
Giải hệ phương trình (A 3I)x θ.
11
2 21 1 162 2 2 1
1
3 3 1 3 3 23 34
h hh h h h 3h
h h h h h 4hh h
2 4 6 1 2 3 1 2 3 1 2 3
3 10 7 3 10 7 0 16 16 0 1 1
4 8 4 1 2 1 0 4 4 0 0 0
1
1 2 3
2
2 3
3
x t
x 2x 3x 0
(A 3I)x θ x t , t R \{0}.
x x 0
x t
Vậy:
- VTR của A ứng với GTR 2λ 3 có dạng:
x (t, t, t) t(1, 1,1), t R \ {0}.
- Một cơ sở của KGR 2 2S (dimS 1) của A ứng với GTR 2λ 3 : 2a (1, 1,1).
KGR 32 2S span{a } {x R | x t(1, 1,1), t R}
1.2. Giá trị riêng, giá trị riêng của ánh xạ tuyến tính.
1.2.1. Các định nghĩa.
Định nghĩa 5: Cho X là một K-không gian vectơ, dimX n , f L(X,X) . Số λ K
được gọi là giá trị riêng (GTR) của f, nếu tồn tại vectơ τ n1 2 nx (x ,x ,..., x ) K ,x θ
sao cho:
f (x) λx .
Khi đó vectơ x được gọi là vectơ riêng (VTR) của f ứng với GTR λ .
Định nghĩa 6: Tập hợp tất cả các VTR của f ứng với GTR λ và bổ sung vectơ θ gọi
là không gian riêng (KGR) của f ứng với GTR λ .
1.2.2. Tính chất.
Định lý 3: Cho X là một K-không gian vectơ, dimX n , f : X X và A là ma trận
của f trong một cơ sở bất kỳ E={e1, e2,…, en} của X. Khi đó:
1) GTR của f cũng là GTR của A và ngược lại.
2) Vectơ x là VTR của f ứng với GTR λ khi và chỉ khi cột tọa độ / E[x] của x trong
cơ sở E là VTR của A ứng với GTR λ .
/E / Ef (x) λx A[x] λ[x] .
(với
1
2
/E 1 1 2 2 n n
n
x
x
[x] , x x e x e ... x e
x
)
1.2.3. Cách tìm GTR, VTR của ánh xạ tuyến tính.
Dựa vào định lý 3 ta thấy việc tìm GTR và VTR của ánh xạ tuyến tính f đưa
về việc tìm GTR và VTR của ma trận của nó trong một cơ sở nào đó. Bởi vậy ta tiến
hành các bước sau:
1) Lập ma trận A của f trong một cơ sở nào đó.
2) Tìm GTR và VTR của A.
Chú ý: Nếu 1 2 nx (x ,x ,..., x ) là VTR của A ứng với GTR λ thì
1 1 2 2 n nx x e x e ... x e là VTR của f ứng với GTR λ .
Ví dụ 3. Tìm GTR và cơ sở trong KGR của ánh xạ tuyến tính 2 2f : P [x] P [x] , xác
định bởi:
2 2f (a bx cx ) (3a 2b) ( 2a 3b)x (5c)x .
Giải:
Xác định ma trận A của f đối với cơ sở chính tắc 2E {1,x,x } :
2 2
f (1) 3 2x 3 2 0
f (x) 2 3x A 2 3 0
f (x ) 5x 0 0 5
.
Giải phương trình đặc trưng:
2A
3 λ 2 1
P (λ) 2 3 λ 0 (1 λ)(5 λ)
0 0 5 λ
1 1A
2 2
λ 1 (m 1)
P (λ) 0
λ 5 (m 2)
.
Vậy GTR của f : 1 1λ 1(m 1) , 1 2λ 5(m 2)
1 1λ 1(m 1)
Giải hệ phương trình (A I)x θ.
Ta có:
2 2 0 2 2 0
2 2 0 0 0 4
0 0 4 0 0 0
1
1 2
2
3
3
x t
2x 2x 0
(A I)x θ x t , t R \ {0}.
4x 0
x 0
Vậy:
- VTR của A ứng với GTR 1λ 1 có dạng:
x (t, t,0) t (1,1,0), t R \ {0}.
- Một cơ sở của KGR 1 1S (dimS 1) của A ứng với GTR 1λ 1 : 1a (1,1,0). Nó
là tọa độ của đa thức 1P 1 x trong cơ sở E. Vậy một cơ sở của KGR tương ứng của
f là 1{P } .
2 2λ 5 (m 2)
Giải hệ phương trình (A 5I)x θ.
Ta có:
2 2 0 2 2 0
2 2 0 0 0 0
0 0 0 0 0 0
1
2 2
1 2 2
3
x t
(A 5I)x θ 2x 2x 0 x t , t,v R : t v 0.
x v
Vậy:
- VTR của A ứng với GTR 2λ 5 có dạng:
2 2x (t,v, t) t( 1,1,0) v(0,0,1), t, v R : t v 0.
- Một cơ sở của KGR 2 2S (dimS 1) của A ứng với GTR 2λ 1 : 2a ( 1,1,0),
3a (0,0,1). Chúng là tọa độ của các đa thức tương ứng 2 3P 1 x,P (0,0,1) trong
cơ sở E. Vậy một cơ sở của KGR tương ứng của f là 2 3{P ,P }.
2. Chéo hóa ma trận, ánh xạ tuyến tính.
2.1. Chéo hóa ma trận.
2.1.1. Định nghĩa 7: Cho ma trận vuông A, nếu tồn tại ma trận khả đảo T sao cho
T-1AT là ma trận đường chéo thì ta nói rằng ma trận A chéo hóa được và ma trận T
làm chéo hóa ma trận A hay ma trận A đưa được về dạng chéo hóa nhờ ma trận T.
2.1.2. Điều kiện chéo hóa được của một ma trận.
Trong các định lý sau đây, ta luôn giả thiết rằng A ma trận vuông cấp n.
Định lý 4: Điều kiện cần và đủ để ma trận A chéo hóa được là nó có n VTR độc lập
tuyến tính.
Định lý 5: Nếu ma trận A đưa được về dạng chéo B thì các phần tử trên đường chéo
chính của B là các GTR của A.
Định lý 6: p VTR ứng với p GTR khác nhau của A là độc lập tuyến tính (đltt).
Định lý 7: Nếu kλ là nghiệm bội km của phương trình đặc trưng của A và nếu
k kr(A λ I) n m
thì A có km VTR đltt ứng với GTR kλ đó.
Từ các định lý trên ta có:
Định lý 8: Ma trận vuông A cấp n chéo hóa được khi và chỉ khi với mỗi GTR kλ bội
km của A 1 2 p(m m ... m n), có
k kr(A λ I) n m ( k 1,2,...,p).
Chú ý: Nếu ma trận vuông A cấp n có n GTR phân biệt thì A chéo hóa được.
Ví dụ 4: Cho
0 0 1
A 0 1 0 .
1 0 0
Từ kết quả của ví dụ 1, ta có:
1r(A λ I) 1 3 2,
2r(A λ I) 2 3 1.
Vậy (theo định lý 8) A chéo hóa được.
Ví dụ 5: Cho
1 4 6
A 3 7 7
4 8 7
.
Từ kết quả của ví dụ 2, ta có:
1r(A λ I) 2 3 2 1 .
Vậy (theo định lý 8) A không chéo hóa được.
Ví dụ 6: Cho
1 0 2
A 2 2 2
0 0 1
.
Ta có:
A
1 λ 0 2
P (λ) 2 2 λ 2 (1 λ)(1 λ)(2 λ)
0 0 1 λ
.
1 1
A 2 2
3 3
λ 1 (m 1)
P (λ) 0 λ 1 (m 1)
λ 2 (m 1)
.
Vì A la ma trận vuông cấp 3 có 3 GTR phân biệt nên A chéo hóa được.
Ví dụ 7: Cho
0 0 0
A 0 0 0
0 0 0
. Bản thân A là ma trận đường chéo. Dễ dàng thấy A
thỏa mãn điều kiện chéo hóa.
Thực vậy đối với GTR λ 0(m 3) , ta có:
0 0 0
r(A λI) r 0 0 0 0 3 3
0 0 0
.
2.1.3. Cách chéo hóa ma trận.
1) Giải phương trình đặc trưng AP (λ) det(A λI) 0 để tìm các GTR của A:
1 2 pλ ,λ ,...,λ với bội tương ứng 1 2 pm ,m ,...,m .
2) Kiểm tra điều kiện chéo hóa.
a) Nếu p n thì A chéo hóa được.
b) Nếu k kk(k 1,2,...,p) : r(A λ I) n m thì A chéo hóa được.
c) Nếu k kk : r(A λ I) n m thì A không chéo hóa được.
Chú ý: Nếu A chéo hóa được thì A được đưa về