Là một tập hợp của các dấu hiệu, đặc
điểm,tính chất cho ta hiểu biết về một
đối tượng.
Thông tin có thể tồn tại ởnhiều dạng khác
nhau:âm thanh,hình ảnh,ký tự
Thông tin có thể được mã hóalàm cho
thông tin ngắn gọn, cô đọng, bảo mật
53 trang |
Chia sẻ: lylyngoc | Lượt xem: 1652 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Nhập môn tin học - Nguyễn Thị Thảo, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
1NHẬP MÔN TIN HỌC
GV: Nguyễn Thị Thảo
BM: Khoa học máy tính – Khoa CNTT
Trường Đại học Nông Nghiệp Hà Nội
2Tổng quan môn học
Các nội dung chính
Cơ sở
Microsoft Word
Microsoft Excel
Hệ số điểm
Chuyên cần: 0.1
Trung bình các bài kiểm tra: 0.3
Cơ sở: kiểm tra giữa kỳ
Microsoft Word: kiểm tra giữa kỳ
Microsoft Excel: 0.6 (thi cuối kỳ)
3Tổng quan môn học (tiếp)
Tài liệu môn học
Giáo trình “NHẬP MÔN TIN HỌC”
(Dùng cho sinh viên Nông nghiệp khối B)
Tác giả: ThS. Đỗ Thị Mơ – TS. Dương Xuân Thành
4Phần I: ĐẠI CƯƠNG VỀ TIN HỌC
1. Thông tin và tin học
1.1 Thông tin
1.2 Tin học
1.3 Đơn vị của thông tin trong tin học
1.4 Mã hóa thông tin trong tin học
2. Các hệ đếm trong máy tính
2.1 Các hệ đếm
2.2 Chuyển số hệ 10 sang hệ 2, hệ 16
2.3 Chuyển số hệ 2, hệ 16 sang hệ 10
2.4 Chuyển đổi giữa hệ 2 và hệ 16
2.5 Các phép toán trọng hệ 2
2.6 Biểu diễn số nguyên trong máy tính
3. Đại số logic
51. Thông tin và tin học
61.1 Thông tin
Là một tập hợp của các dấu hiệu, đặc
điểm, tính chất … cho ta hiểu biết về một
đối tượng.
Thông tin có thể tồn tại ở nhiều dạng khác
nhau: âm thanh, hình ảnh, ký tự …
Thông tin có thể được mã hóa làm cho
thông tin ngắn gọn, cô đọng, bảo mật …
71.2 Tin học
Sự hình thành thuật ngữ tin học
Năm 1962, một người Pháp có tên Phillipe Dreufus
đã dùng đầu tiên để định nghĩa cho một môn khoa
học mới trong lĩnh vực xử lý thông tin.
Năm 1966, Viện hàn lâm khoa học Pháp đã đưa ra
định nghĩa: “Tin học là môn khoa học về xử lý hợp lý
các thông tin, đặc biệt bằng các thiết bị tự động, các
thông tin đó chứa đựng kiến thức của loài người trong
các lĩnh vực kỹ thuật, kinh tế và xã hội”
Tin học là một môn học nghiên cứu việc tự động hóa
quá trình xử lý thông tin.
81.2 Tin học (tiếp)
Ngày nay tin học được chia thành hai lĩnh
vực
Phần cứng: Thiết kế, lắp đặt, bảo trì các thiết bị
tự động để xử lý thông tin.
Phần mềm: xây dựng các thuật toán, các
chương trình máy tính để xử lý thông tin
Phần cứng và phần mềm có quan hệ mật
thiết với nhau
Nếu có phần mềm mà không có phần cứng thì
chương trình không thể hoạt động được và
ngược lại.
91.3 Đơn vị của thông tin trong tin học
BIT (BInary digiT)
BIT là đơn vị nhỏ nhất của thông tin, biểu thị một
phần tử nhớ của máy tính.
Các thiết bị máy tính đều được xây dựng từ các linh
kiện điện tử chỉ có hai trạng thái khác nhau được mã
hóa tương ứng với hai ký hiệu chữ số 0 và 1. Nếu
trạng thái này là 0 thì trạng thái kia là 1, không có
trạng thái thứ ba.
Mọi thông tin đưa vào máy tính (ấn phím, bấm chuột
…) đều được chuyển hóa thành các xung điện có
mức điện thế cao hay thấp.
Mức điện thế cao mức logic 1
Mức điện thế thấp mức logic 0
10
1.3 Đơn vị của thông tin trong tin học (tiếp)
Các xung điện sẽ được máy tính ghi tương ứng
vào các phần tử nhớ, mỗi phần tử này chỉ có
thể thiết lập bằng 0 hoặc bằng 1.
Ví dụ:
Mỗi ô chỉ có thể là 0 hoặc 1 mỗi ô được gọi là 1
BIT
11
1.3 Đơn vị của thông tin trong tin học (tiếp)
Byte
Là một nhóm 8 bit liền nhau bắt đầu từ bit thứ
8i và kết thúc là bit thứ 8i+7 (không phải bắt
đầu từ vị trí bất kỳ)
Ví dụ
Từ bit thứ 0 bit thứ 7: là 1 byte
Từ bit thứ 8 bit thứ 15: là 1 byte
Từ bit thứ 2 bit thứ 9: không phải là 1 byte
1 byte có thể lưu được một ký tự hoặc 1 số
nguyên nhỏ
12
1.3 Đơn vị của thông tin trong tin học (tiếp)
Các đơn vị bội của bit
1 Byte = 8 bits
1 KiloByte (KB) = 210 = 1024 bytes
1 MegaByte (MB) = 210 KB
1 GigaByte (GB) = 210 MG
1 TeraByte (TB) = 210 GB
13
1.4 Mã hóa thông tin trong tin học
Trong tin học các thông tin đều được biểu
diễn bằng những mệnh đề xác định, mỗi
mệnh đề được cấu tạo từ các chữ cái, các
chữ số, các dấu (gọi chung là ký tự).
Mỗi ký tự được biểu diễn (mã hóa) bởi
một số nhất định trong hệ đếm 2.
Tập hợp các ký tự được mã hóa tạo thành
bảng mã.
Xét 2 bảng mã: ASCII và Unicode
14
1.4 Mã hóa thông tin trong tin học (tiếp)
Bảng mã ASCII
Sử dụng 8 bit để mã hóa tập ký tự mã hóa được
28 = 256 ký tự
Bảng mã được chia thành hai phần
128 số mã hóa đầu tiên (0127) phần cố định
• 031: Các ký tự điều khiển
• 32: Khoảng trống (space)
• 4857: Các số từ 0 đến 9
• 6590: Các chữ cái in hoa từ “A” đến “Z”
• 97122: Các chữ cái in thường từ “a” đến “z”
128 số mã hóa sau (128256) phần này có thể thay
đổi có thế xây dựng nhiều bảng mã khác nhau
khó khăn cho người sử dụng cần có một chuẩn
chung thống nhất bảng mã Unicode.
15
1.4 Mã hóa thông tin trong tin học (tiếp)
Bảng mã Unicode
Dùng 16 bit để mã hóa tập các ký tự có thể
mã hóa được 216 = 65536 ký tự.
Bảng mã này mã hóa cho hầu hết tập các ký của
các quốc gia trong đó có Việt Nam.
Trong bảng mã Unicode, 128 số đầu tiên mã hóa
các ký tự giống bảng mã ASCII.
Chữ A trong bảng mã ASCII: 0100 0001
Chữ A trong bảng mã Unicode: 0000 0000 0100 0001
Dùng bảng mã Unicode dung lượng lưu trữ lớn gấp
đôi dùng bảng mã ASCII
16
1.4 Mã hóa thông tin trong tin học (tiếp)
Bài toán so sánh hai chuỗi ký tự
Cách làm: so sánh mã (ASCII/ Unicode) của từng cặp
ký tự tương ứng ở hai chuỗi theo thứ tự từ trái sang
phải
Nếu gặp 1 cặp ký tự có mã khác nhau thì dừng so sánh
và kết luận chuỗi chứa ký tự có mã lớn hơn là chuỗi
lớn hơn.
Nếu mọi cặp ký tự của hai chuỗi đều có mã bằng nhau thì
kết luận hai chuỗi bằng nhau.
Nếu trong quá trình so sánh một chuỗi đã hết ký tự, một
chuỗi vẫn còn ký tự (chuỗi ngắn hơn là phần đầu của
chuỗi dài hơn) thì kết luận chuỗi dài hơn là chuỗi lớn hơn.
17
Ví dụ so sánh các chuỗi ký tự
VD1: So sánh hai chuỗi ‘abcDRC’ và ‘abcdRC’
So sánh từng cặp ký tự: ‘a’=‘a’, ‘b’=‘b’, ‘c’=‘c’, ‘D’≠’d’
dừng so sánh và kết luận chuỗi thứ hai lớn hơn
vì ‘d’ >’D’
VD2: so sánh hai chuỗi ’12ed’ và ’12ed’
So sánh từng cặp ký tự: ‘1’=‘1’, ‘2’=‘2’, ‘e’=‘e’,
‘d’=‘d’, mọi cặp ký tự đều bằng nhau kết luận hai
chuỗi bằng nhau
VD3: so sánh hai chuỗi ‘htr’ và ‘htr2d34’
So sánh từng cặp ký tự: ‘h’=‘h’, ‘t’=‘t’, ‘r’=‘r’, chuỗi
thứ nhất đã hết ký tự, chuỗi thứ hai vẫn còn ký tự
chuỗi thứ hai lớn hơn chuỗi thứ nhất
18
2. Các hệ đếm trong máy tính
19
2.1 Các hệ đếm
Hệ đếm cơ số 10 (hệ thập phân – Decimal)
Là hệ đếm dùng để đếm và tính toán trong đời
sống hàng ngày.
Sử dụng 10 ký hiệu chữ số 09 để biểu diễn
các số
Cách viết
12510 hoặc 125D dạng rút gọn
Biểu diễn theo cơ số của hệ đếm:
12510 = 125D = 1×10
2 + 2×101 + 5×100
20
2.1 Các hệ đếm (tiếp)
Hệ đếm cơ số 2 (hệ nhị phân – Binary)
Được sử dụng để biểu diễn thông tin trong máy
tính
Sử dụng 2 ký hiệu chữ số 0 và 1 để biểu diễn
các chữ số
Cách viết
101102 hoặc 10110B dạng rút gọn
Biểu diễn theo cơ số của hệ đếm
101102 = 10110B = 1×2
4 + 0×23 + 1×22 + 1×21+ 0×20
Cách đọc số khác trong hệ đếm 10
21
2.1 Các hệ đếm (tiếp)
Hệ đếm cơ số 16
Dùng để ghi địa chỉ của các ô nhớ trong máy
tính, địa chỉ của các cổng vào ra.
Sử dụng 16 ký hiệu (09 và AF) để biểu
diễn các số.
Cách viết
2AF16 hoặc 2AFH dạng rút gọn
Biểu diễn theo cơ số của hệ đếm:
2AF16 = 2AFH = 2×16
2 + 10×161 + 15×160
22
2.1 Các hệ đếm (tiếp)
Tổng quát
Giả sử N là một số trong hệ đếm cơ số c (hệ 2,
hệ 10 hoặc hệ 16) và N có n+1 chữ số (từ a0
đến an) có thể biểu diễn N bằng một trong
hai cách
Dạng rút gọn: Nc = anan-1…a1a0c
Dạng khai triển:
Nc = an×c
n + an-1×c
n-1 +…+ a1×c
1 + a0×c
0
Hay:
ca
i
n
i
i
Nc
0
23
2.2 Chuyển số hệ 10 sang hệ 2, hệ 16
Cách làm
Lấy số trong hệ đếm 10 chia nguyên cho cơ
số của hệ đếm mới (2 hoặc 16)
Lấy kết quả thu được tiếp tục chia nguyên
cho cơ số hệ đếm mới, lặp lại bước này cho
tới khi kết quả của phép chia bằng 0
Viết số trong hệ đếm mới là tập hợp số dư
của các phép chia viết theo chiều ngược lại
(số dư của phép chia cuối cùng viết trước, số
dư của phép chia đầu tiên viết sau)
24
Ví dụ (2.2)
Chuyển 4310 sang hệ 2
4310=10 10112
Chuyển 9510 sang hệ 16
Thay số dư 15 = F
9510=5F16 (cách viết đúng)
9510=51516 (cách viết sai)
Số hệ
10
Cơ số
mới
Thương Số
dư
43 2 21 1
21 2 10 1
10 2 5 0
5 2 2 1
2 2 1 0
1 2 0 1
Số hệ
10
Cơ số
mới
Thương Số dư
95 16 5 15
5 16 0 5
25
2.3 Chuyển số hệ 2, hệ 16 sang hệ 10
Cách làm
Viết số ở hệ đếm cơ số c (hệ 2, hệ 16) ở dạng
biểu thức khai triển
Nc = an×c
n + an-1×c
n-1 +…+ a1×c
1 + a0×c
0
Tính giá trị biểu thức
26
Ví dụ (2.3)
Chuyển 1011 00102 sang hệ 10
1011 00102 =1×2
7 + 0×26 + 1×25 + 1×24 +
0×23 + 0×22 + 1×21 + 0×20
= 128 + 32 + 16 + 2 = 17810
Chuyển 10F16 sang hệ 10
10F16 = 1×16
2 + 0×161 + 15×160 (thay F=15)
= 256 + 15 = 27110
27
2.4 Chuyển đổi giữa hệ 2 và hệ 16
Hệ 10 Hệ 16 Hệ 2
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
Hệ 10 Hệ 16 Hệ 2
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
28
2.4 Chuyển đổi giữa hệ 2 và hệ 16 (Tiếp)
Chuyển đổi từ hệ 16 sang hệ 2
Cách làm
Đổi từng chữ số hệ 16 tương ứng thành nhóm 4 chữ
số trong hệ 2
Ví dụ: chuyển C18A16 sang hệ 2
• C16 = 11002
• 116 = 00012
• 816 = 10002
• A16 = 10102
Vậy: C18A16 = 1100 0001 1000 10102
29
2.4 Chuyển đổi giữa hệ 2 và hệ 16 (Tiếp)
Chuyển đổi từ hệ 2 sang hệ 16
Cách làm
Chia số hệ 2 thành từng nhóm 4 bits theo chiều từ
phải sang trái. Nếu nhóm cuối cùng (bên trái nhất)
không đủ 4 bit thì có thể thêm 0 vào đằng trước hoặc
giữ nguyên.
Đổi từng nhóm 4 bits (4 chữ số hệ 2) thành một chữ
số tương ứng trong hệ 16
Ví dụ: chuyển 1011 0110 1010 11102 sang hệ 16
Vậy:
1011 0110 1010 11102 = B6AE16
30
2.5 Các phép toán trong hệ 2
Phép cộng
Nguyên tắc: thực hiện
tương tự như trong hệ
10, cộng từng cặp chữ
số theo thứ tự từ phải
sang trái. Nếu có số
nhớ thì cộng số nhớ với
cặp ngay bên trái
Thực hiện phép cộng
dựa vào bảng cộng sau
Bảng cộng 2 bit
A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
31
2.5 Các phép toán trong hệ 2 (tiếp)
Bảng cộng 3 bit A B C Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
32
2.5 Các phép toán trong hệ 2 (tiếp)
Phép trừ
Nguyên tắc:
A - B = A + (-B)
Muốn thực hiện được phép trừ, ta đi tìm biểu diễn
của số (-B) trong hệ đếm 2
33
2.6 Biểu diễn số nguyên trong máy tính
Máy tính có thể dùng 8 bits, 16 bits hoặc
32 bits (1 byte, 2 byte hoặc 4 byte) để biểu
diễn một số nguyên, càng dùng nhiều bit
thì biểu diễn được số nguyên càng lớn.
Có 2 loại số nguyên biểu diễn trong máy
tính:
Số nguyên không có dấu
Số nguyên có dấu
34
2.6 Biểu diễn số nguyên trong máy tính (tiếp)
Số nguyên không có dấu – 8 bits
Dùng cả 8 bits để biểu diễn độ lớn
Có thể biểu diễn được 28 = 256 số nguyên
Dải biểu diễn: 0000 0000 1111 1111
(0 255)
Có hai dạng bài tập với số nguyên không có
dấu
35
2.6 Biểu diễn số nguyên trong máy tính (tiếp)
Dạng 1: Cho 1 số nguyên hệ 10, tìm biểu diễn
dạng số nguyên không dấu 8 bit của số đó
Cách làm
Đổi số hệ 10 sang hệ 2
Thêm 0 vào trước cho đủ 8 bits (8 chữ số) nếu chưa
đủ 8 bits
Ví dụ: tìm biểu diễn dạng số nguyên không có dấu
8 bit của 6510
Đổi 6510 sang hệ 2: 6510 = 100 00012
Thêm 0 cho đủ 8 bit: 0100 00012
Biểu diễn dạng số nguyên không có dấu 8 bit của
6510 là 0100 00012
36
2.6 Biểu diễn số nguyên trong máy tính (tiếp)
Dạng 2: cho biểu diễn dạng số nguyên
không có dấu 8 bits của một số nguyên.
Tìm giá trị trong hệ 10?
Cách làm: đổi số từ hệ 2 sang hệ 10
Ví dụ: cho biểu diễn dạng số nguyên không có
dấu 8 bit như sau 0100 11012, tìm giá trị trong
hệ 10?
Đổi 0100 11012 sang hệ 10: 0100 11012 = 7710
37
2.6 Biểu diễn số nguyên trong máy tính (tiếp)
Số nguyên có dấu – 8 bits
Dùng bit đầu tiên bên trái để biểu diễn dấu (bit
dấu) với quy ước:
Bit dấu = 0: số dương
Bit dấu = 1: số âm
7 bits còn lại để biểu diễn độ lớn
Biểu diễn được 256 số nguyên có dấu
Dải biểu diễn: -128 127
38
2.6 Biểu diễn số nguyên trong máy tính (tiếp)
Cách tìm số bù 2
Cách 1:
Tìm số bù 1 bằng cách thực hiện đảo bit (10; 01)
Tìm số bù 2 bằng cách lấy số bù 1 cộng với 1
• Số ban đầu: 0100 1010
• Đảo bit: 1011 0101 số bù 1
• Số bù 1 +1: 1011 0110 số bù 2
Cách 2:
Duyệt các bit theo thứ tự từ phải sang trái, giữ nguyên bit
cho tới khi gặp bit bằng 1 đầu tiên, các bit còn lại thực
hiện đảo bit (10; 01)
Có 2 dạng bài tập với số nguyên có dấu
39
2.6 Biểu diễn số nguyên trong máy tính (tiếp)
Dạng 1: Cho một số hệ 10, tìm biểu diễn
dạng số nguyên có dấu 8 bit.
Cách làm:
Nếu là số dương:
Đổi số hệ 10 sang hệ 2
Thêm 0 vào trước cho đủ 8 bit (nếu chưa đủ 8 bit)
Ví dụ: Tìm biểu diễn dạng số nguyên có dấu 8
bits của 4910
Đổi 4910 sang hệ 2: 4910 = 11 00012
Thêm 0 vào trước cho đủ 8 bits: 0011 00012
Biểu diễn dạng số nguyên có dấu 8 bits của 4910 là 0011
00012
40
2.6 Biểu diễn số nguyên trong máy tính (tiếp)
Nếu là số âm:
Đổi giá trị tuyệt đối của số hệ 10 sang hệ 2
Thêm 0 vào trước cho đủ 8 bit (nếu chưa đủ 8 bit)
Tìm số bù 2
Ví dụ: Tìm biểu diễn dạng số nguyên có dấu 8
bits của -4910
Đổi |-4910| sang hệ 2: |-4910| = 4910 = 11 00012
Thêm 0 vào trước cho đủ 8 bits: 0011 00012
Tìm số bù 2 của 0011 00012 là: 1100 11112
Biểu diễn dạng số nguyên có dấu 8 bits của -4910 là
1100 11112
41
2.6 Biểu diễn số nguyên trong máy tính (tiếp)
Dạng 2: cho biểu diễn dạng số nguyên có
dấu 8 bit của một số nguyên. Tìm giá trị
trong hệ đếm 10.
Cách làm:
Xét bit dấu để xác định đó là số dương hay âm
Nếu là số dương (bit dấu = 0)
Nếu là số âm (bit dấu =1)
i
i
iaN 2
6
0
10
1282
6
0
10
i
i
iaN
42
2.6 Biểu diễn số nguyên trong máy tính (tiếp)
VD1: cho biểu diễn dạng số nguyên có dấu 8
bits như sau 0100 11112. Tính giá trị trong hệ 10
Bit dấu = 0 là biểu diễn của số dương
Giá trị: = 1×26 + 1×23 + 1×22 + 1×21 + 1×20 = 7910
VD2: cho biểu diễn dạng số nguyên có dấu 8
bits như sau 1010 11012. Tính giá trị trong hệ 10
Bit dấu = 1 là biểu diễn của số âm
Giá trị: = 1×25 + 1×23 + 1×22 + 1×20 – 128 = -8310
43
BT
10->2
a. -79
b. -85
c. -25
d. -56
e. +34
44
BT
2->10
a. 1010 1100
b. 1101 1010
c. 1110 1110
d. 1100 0010
e. 0101 0100
45
3. Đại số logic
46
3.1 Mệnh đề logic
Là một câu nói, câu viết có tính chất khẳng định hoặc phủ
định một sự kiện
Câu mệnh lệnh, câu cảm thán không phải là mệnh đề logic
Mỗi mệnh đề logic chỉ có thể nhận 1 trong hai giá trị logic
(hằng logic)
Đúng – True – T – 1
Sai – False – F – 0 (T>F)
Từ các mệnh đề logic đơn giản ta có thể xây dựng lên các
mệnh đề phức tạp hơn bằng các phép liên kết: “KHÔNG”,
“VÀ” “HOẶC”
Các phép “KHÔNG”, “VÀ” “HOẶC” cùng với các mệnh đề
làm thành một môn đại số và gọi là đại số logic hay đại số
mênh đề
47
3.2 Biến logic
Là biến chỉ có thể nhận một trong hai giá
trị True hoặc False
VD: khi giải một bài toán ta đưa ra kết luận “m
là một số âm” đây là một biến logic có thể
nhận giá trị True/ False tùy thuộc vào giá trị của
m.
Nếu m là số âm biến logic nhận giá trị true
Nếu m là số dương biến logic nhận giá trị False
48
3.3 Hàm logic
Là hàm của các biến và các toán tử logic
Những bài toán logic được phát biểu dưới dạng các
câu nói hoặc câu viết xác định các yêu cầu và các
ràng buộc đối với hệ thống mà bài toán giải quyết.
Ta có thể biểu diễn sự liên kết giữa các mệnh đề
bằng 1 biểu thức logic hoặc được gọi là hàm logic
Hàm logic sẽ trả về một giá trị logic
X = “sv có hộ khẩu Hà Nội”
Y= “ sv có điểm lớn hơn 20”
F=X AND Y = “ sv có hộ khẩu Hà Nội và có điểm lớn
hơn 20”
49
3.4 Các toán tử logic
NOT (phủ định) AND (VÀ)
Phép AND chỉ đúng
khi tất cả cùng đúng
A NOT A
T F
F T
A B A AND B
F F F
F T F
T F F
T T T
50
3.4 Các toán tử logic (tiếp)
OR (HOẶC)
Phép OR chỉ sai khi
tất cả cùng sai
XOR (HoẶC LOẠI TRỪ)
A B A OR B
T T T
T F T
F T T
F F F
A B A XOR B
T T F
T F T
F T T
F F F
51
3.5 biểu thức logic
Là biểu thức kết hợp các hằng logic, hàm logic,
biến logic và các toán tử logic.
Kết quả của một biểu thức logic là một hằng
logic (T/ F)
Cách tính giá trị biểu thức logic:
Thay giá trị vào các biến nếu có
Thực hiện các phép tính số học, các phép so sánh nếu
có
Thực hiện các toán tử logic theo thứ tự ưu tiên:
NOT AND OR XOR
52
A.
NOT(LOAI=500)OR(LOAI
<=“B”)AND(GIA<=200)
1.LOAI=“D”,GIA=500
GIAI
Not F And T Or F And F
T and T or F
T or F = T
53
(sin2x ’AXY’) AND ((x+y)2 > 2xy)
T or not F and F
T
TEN=‘H*’ ‘Ha’ ‘Mai’
‘Ha’=‘H*’ -> T
‘Mai’ = ‘H*’ -> F
khác