Abstract
In this paper, we consider the g-Navier-Stokes equations in a two-dimensional bounded domain Ω. We
study the existence and exponential stability of a stationary solution under some certain conditions.
Keywords: g-Navier-Stokes equations; stationary solutions; exponential stability.
Tóm tắt
Trong bài báo này, chúng ta xét hệ phương trình g-Navier-Stokes trong miền hai chiều bị chặn Ω. Chúng
ta nghiên cứu sự tồn tại và ổn định mũ của nghiệm dừng trong một số điều kiện nhất định.
5 trang |
Chia sẻ: thanhle95 | Lượt xem: 318 | Lượt tải: 0
Bạn đang xem nội dung tài liệu On the weak stationary solutions to 2D g-Navier-Stokes equations, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
NGÀNH TOÁN HỌC
93Tạp chí Nghiên cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190 Số 4 (67).2019
On the weak stationary solutions to 2D g-Navier-Stokes
equations
Nghiệm dừng yếu của hệ phương trình g-Navier-Stokes hai chiều
Nguyen Viet Tuan, Tran Hoang Yen
Email: nguyentuandhsd@gmail.com
Sao Do University
Received date: 02/10/2019
Accepted date: 19/12/2019
Published date: 31/12/2019
Abstract
In this paper, we consider the g-Navier-Stokes equations in a two-dimensional bounded domain Ω. We
study the existence and exponential stability of a stationary solution under some certain conditions.
Keywords: g-Navier-Stokes equations; stationary solutions; exponential stability.
Tóm tắt
Trong bài báo này, chúng ta xét hệ phương trình g-Navier-Stokes trong miền hai chiều bị chặn Ω. Chúng
ta nghiên cứu sự tồn tại và ổn định mũ của nghiệm dừng trong một số điều kiện nhất định.
Từ khóa: Hệ phương trình g-Navier-Stokes; nghiệm dừng; ổn định mũ.
1. INTRODUCTION
Let Ω be a bounded domain in with smooth
boundary ∂Ω. We consider the following 2D
g-Navier-Stokes equations
Where:
u = u (x,t) = u (u
1
,u
2
) is the unknown velocity vectơ;
p = p (x,t) is the unknown pressure, v > 0 is the kinematic viscosity coefficient;
u0 is the initial velocity.
The 2D g-Navier-Stokes equations arise in a natural way when we study the standard 3D Navier-
Stokes problem in a 3D thin domain Ω
g
= Ω ×(0,g)
(see [9] ). As mentioned in [8, 9], good properties
of the 2D g-Navier-Stokes equations can lead to an initial study of the 3D Navier-Stokes equations
in the thin domain Ω
g
.
In the last few years, the
existence and long-time behavior of solutions in
terms of existence of attractors for 2D g-Navier-Stokes equations have been studied extensively
in both autonomous and non-autonomous cases
(see e.g. [1, 2, 4, 5, 6, 7, 8, 10] and references
therein).
In this paper we will study the existence, uniqueness
and stability of weak stationary solutions to
problem (1). The existence of stationary solutions
is proved by using the compactness method.
When the viscosity is "larger" than the external
force, we show that the stationary solution is
unique and is globally exponentially stable. To do
this, we assume that the function g satisfies the
following assumption:
( ) ( )1, W ¥Î WG g such that ( )0 00 < £ £m g x M for all
( )1 2, ,= ÎWx x x and
1
20 1 ,l¥Ñ is the
first eigenvalue of the g-Stokes operator in Ω (i.e.
the operator A is defined in Section 2 below).
This paper is organized as follows. In Section 2, for
convenience of the reader, we recall some results
on function spaces and operators related to 2D
g-Navier-Stokes equations which will be used. In
Section 3, we prove the existence, uniqueness and
exponential stability of weak stationary solutions
to 2D g-Navier-Stokes equations.
2. PRELIMINARY RESULTS
Let ( ) ( )( )22 2,W = WL g L and ( ) ( )( )21 10 0,W = WH g H be
endowed, respectively, with the inner products
Người phản biện: 1. Assoc.Prof.Dr. Khuat Van Ninh
2. Dr. Dao Trong Quyet
!2
∂u
∂t −νΔu + (u.∇)u +∇p = f in Ω×!
+ ,
∇. gu( ) = 0 in Ω×!+ ,
u = 0 on ∂Ω,
u(x,0) = u
0
(x) in Ω,
⎧
⎨
⎪⎪⎪
⎩
⎪⎪⎪
(1)
NGHIÊN CỨU KHOA HỌC
94 Tạp chí Nghiên cứu khoa học,Trường Đại học Sao Đỏ, ISSN 1859-4190 Số 4 (67).2019
(5)
( ) ( ) ( )11 2 1 2 0, , , ,= = Î Wu u u v v v H g and norms
( ) ( )( )2 2, , , u .g gu u u u u= = Thanks to assumption
(G) the norms . and . are equivalent to the usual ones in ( )( )210 .WH
Let
𝒱𝒱
( )( ) ( ){ }
2
0 : . 0 .¥= Î W Ñ =u C gu
Denote by gH the closure of v in ( )2 ,WL g , and
by gV the closure of v in ( )10 , .WH g It follows that
' ' ,Ì º Ìg g g gV H H V where the injections are dense
and continuous. We will use
*
. for the norm in
' ,gV and ., . for duality pairing between gV and
' .gV
We define the g-Stokes operator ': ®g gA V V by
( ) ( )( ), , ,= gAu v u v for all , .Î gu v V
Then = - DgA P and ( ) ( )2 , ,= W ! gD A H g V where
gP is the ortho-projector from ( )10 ,WH g onto .gV
We also define the operator 𝐵𝐵: 𝑉𝑉! × 𝑉𝑉! → 𝑉𝑉!" by ( )( ) ( ), v , w , , w ,=B u b u v for all , , w ,Î gu v V where
( ) 2
, 1
, , w w .W
=
¶
= ¶å ò ji ji j i
vb u v u gdxx
It is easy to check that if , , w ,Î gu v V then
( ) ( ) ( ), , w , w, , , , 0.= - =b u v b u v b u v v
We also set
( ) ( ), u=B u B u for all .Î gu V
We recall some known results which will be used
in the paper.
Lemma 2.1 ([1]) If n = 2 then
Where , 1...3,=ic i are appropriate constants.
Lemma 2.2 ([3]) Let ( )2 0, ; ,Î gu L T V then the function
Cu defined by
( )( ), . , , , , ,æ öæ ö æ öÑ Ñ= Ñ = " Îç ÷ç ÷ ç ÷è ø è øè ø gg g
g gCu t v u v b u v v Vg g
belongs to ( )2 0, ;H ,gL T and hence also belongs to
( )2 '0, ;V .gL T Moreover, ( ) ( )0 . ,
¥Ñ£ gCu t u tm for a.e.
( )0,T ,Ît and ( ) ( )
0
. ,¥Ñ£ gCu t u tm for a.e. ( )0,T ,Ît
3. EXISTENE, UNIQUENESS AND
EXPONENTIAL STABILITY OF WEAK
STATIONARY SOLUTIONS
First, we give the definition of the weak stationary
solutions to 2D g -Navier-Stokes equations (1)
Definition 3.1. Let 'Î gf V be given. A weak
stationary solution to problem (1) is an element
* Î gu V such that ( )* * * *,n n+ + =Au Cu B u u f in ' .gV
The following theorem is our main result in this
section.
Theorem 3.1. Let f be given in ' .gV Then, (i)
there exists a weak stationary solution * Î gu V to (1);
(ii) furthermore, if the following condition holds
2
1
1 1 *
2 20 1 1
1 ,n
l l
¥
é ùæ öÑê úç ÷- >ê úç ÷ç ÷ê úè øë û
g c f
m
Where
1c is the constant in Lemma 2.1, then the
weak stationary solution to is (1) unique and
globally exponentially stable. That is, for any initial
data 0 Î gu H and the any weak solution u (t) of (1.1) then there exists λ > 0 such that
( ) 2 2* *0 , 0.l-- £ - " ³tu t u u u e t
Moreover, if *u satisfying
{ }
1
* 21 1 2 31
20 1
1 , ax , , ,4
n l
l
¥
æ öÑç ÷£ - =ç ÷ç ÷è ø
gu c m c c cc m
1* 20 0 1 1
20 1
1 , nl
l
¥
æ öÑç ÷- £ -ç ÷ç ÷è ø
gu u k
m
Where
0k is a positive real number, then there
exists , 0a >k such that
( ) 2 2* * *0 , 0.a-- £ - " ³ >tu t u k u u e t t
Proof. (i) Existence. Let { } 1w ¥=j j be a basis of gV
consisting of eigenfunctions of the g -Navier-
Stokes operator .A For each m ≥ 1, let us denote { }1w ,..., w=m mV span and we would like to define an
approximate weak stationary solutions mu of (1.1)
by.
1
w ,g
=
=åmm mi j
j
u
Such that
ν u
m
,v( )( )
g
+ν Cum ,v( )
g
+ b um ,um ,v( )
∀ ∈
To prove the existence of ,mu we define operators
: ®m m mR V V by
( ) ( )
( )
1 1 1 1
2 2 2 21
1 1 1 1 1
2 2 2 2 22
1 1 1
2 2 23
w w , , , w ,
w , ,
, , w , w ,
w , , ,
w .
ì " Îïïï " Îïï
= Î Îíïï " Î Îï Îïïî
g
g
g
g
g
c u u v u v V
c u u v Av u V
b u v v D A H
c u Au v u D A v V
H
(2)
(3)
(4)
( ) ( )
( )( )
2
2
1
, , , , ,
, . ,
W
W
=
= Î W
= Ñ Ñ
ò
å ò
g
i ig j
u v uvgdx u v L g
u v u v gdx
ν ν
= f ,v , ∀v ∈V
g
. 5
( )( ) ( ) ( ), , v , , , , , , .
n n= + +
- " Î
m g
m
R u v Au Cu v b u u v
f v u v V
, , v , , , , , , .
n n
- " Î
m g
m
R u v Au Cu v b u u v
f v u v V
NGÀNH TOÁN HỌC
95Tạp chí Nghiên cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190 Số 4 (67).2019
For all ,Î mu V
If we set
*
1
20 1
,
1
b
n
l
¥
= æ öÑç ÷-ç ÷ç ÷è ø
f
g
m
We obtain ( )( ), 0³mR u u for all Î mu V such that .b=u
Consequently, by a corollary of the Brouwer fixed
point theorem, for each m≥1 there exists Îm mu V
such that R
m
(u
m
) = 0 with .b£mu
Taking = mv u in (5) we have
( )( ) ( ), , , u .n n+ =m m m m mggu u Cu u f
By Lemma 2.2, we have
2 21*
20 1
,nn
l
¥Ñ£ +m m mgu f u u
m
if follows that
*
1
20 1
1 .
1
mu f
g
m
n
l
¥
£ æ öÑç ÷-ç ÷ç ÷è ø
Hence using (6) we deduce that the sequence { }mu is
bounded in ,gV and therefore by the compactness
of the embedding gV ,gH we can extract a
subsequence { } { }' Ìm mu u that converges weakly in
gV and strongly in gH to an element * .Î gu V It is
now standard to take limits in (5) to obtain that *u
is a weak stationary solution to problem (1).
(ii) Uniqueness. Assume that * *,u v are two weak
stationary solutions to problem (1). We have
Denote v = u* - v*, we obtain
Hence
12 2* * * * *21
2* *
1
20 1
,
n l
n
l
-
¥
- £ -
Ñ
+ -
u v c u v v
g u v
mand so
This implies
thanks to estimate (6) for v*. From (2) and (7), we get the desired result.
(iii) Exponential stability. Let * Î gu V be the unique
stationary solution to (1).
From (2) and (6), it follows that
We also use the notation
0 1
20 1
1 0.g
l
¥Ñ
= - >g
m
Let u (.) be any solution of problem (1). Denote
w (t) = u (t) - u*, one has
( )( ) ( )( )( ) ( )( )
( ) ( )( ) ( )* *
w , w , Cw ,
, , , , 0, . 9
g gg
g
d t v t v t vdt
b u t u t v b u u v v V
n n+ +
+ - = " Î
We first give an estimate for w . Replacing v by
w (t) in (9) and noting that
( ) ( ) ( )( ) ( )( ) ( ) ( )( )* * *, , w , , w w , , w ,- =b u t u t t b u u t b t u t
We get
( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )*
w , w w , w
Cw , w w , u , w 0.
n
n
+
+ + =
g g
g
d t t t tdt
t t b t t
We can write this as
( ) ( ) ( ) ( )( )
( ) ( )( )
2 2
*
w 2 w 2 Cw , w
2 w , u , w .
n n= - -
-
g
d t t t tdt
b t t
By Lemmas 2.1 and 2.2, we have
By applying condition (8) we obtain
( ) ( )2 2*11 0 1
21
2w 2 w . l ng
l
æ öç ÷£ - +ç ÷ç ÷è ø
cd t u tdt
This implies that
( )( ) ( )
2 2
1*
20 1
2
1 *
20 1
, u , u , u ,
1 .
n n
nn
l
n
l
¥
¥
= + -
ѳ - -
æ öÑç ÷³ - -ç ÷ç ÷è ø
m gR u Au Cu f v
gu f u u
m
g u f u
m
( ) ( )
( )
* * * * * *
* *
, , , , v ,
, 0, .
n
n
- + -
+ - = " Î gg
Au Av v b u u v b v v
Cu Cv v v V
( )
( )
* * * * *
* * * *
, , ,
, .
n
n
- - =
- - - g
Au Av u v b v v v
Cu Cv u v
2* *
1
20 1
1 2* *21 *
1
20 1
1
1 . , 7
1
g u v
m
c f u v
g
m
n
l
l
n
l
¥
-
¥
æ öÑç ÷- -ç ÷ç ÷è ø
£ -æ öÑç ÷-ç ÷ç ÷è ø
(7)
1* 21 1
1 20 1
1 .n l
l
¥
æ öÑç ÷£ -ç ÷ç ÷è ø
gu c m
(8)
(9)
(6)
↪
12 2* * * * *211
20 1
1 .n l
l
-¥
æ öÑç ÷- - £ -ç ÷ç ÷è ø
g u v c u v v
m
( ) ( ) ( )
( ) ( )
( )
2 2 2
1
20 1
2*
1
2*1
0 1
21
2w 2 w w
2 w w
2 2 w . 10
gd t t tdt m
c u t t
c u t
nn
l
ng
l
¥Ñ= - +
+
æ öç ÷£ - +ç ÷ç ÷è ø
(10)
NGHIÊN CỨU KHOA HỌC
96 Tạp chí Nghiên cứu khoa học,Trường Đại học Sao Đỏ, ISSN 1859-4190 Số 4 (67).2019
( ) 4*41 0 1 03 3
1 0
1 1w .2 4nl g nl gln g- ³
c t (13)
( ) ( )2 2w w 0 ,l-£ tt e
Where *11 0 1
21
2= 2 0. l l ng
l
æ öç ÷- >ç ÷ç ÷è ø
c u
Now, we have to give a suitable estimate on w .
From (10) we have
( ) ( )2 2*10 1
21
2w 2 w 0.ng
l
æ öç ÷
+ - £ç ÷ç ÷è ø
cd t u tdt
Integrating both sides from 0 to
0 0,>T we obtain
( ) ( ) ( )02 2 2*10 0 1
021
2w 2 w w 0 .ng
l
æ öç ÷
+ - £ç ÷ç ÷è ø
ò
TcT u t dt
This yields
( ) ( )0 2 2*10 1
021
22 w w 0 ,ng
l
æ öç ÷- £ç ÷ç ÷è ø
ò
Tc u t dt
Or, equivalently,
( ) ( )0 2 2
0
*1
0 1
21
1w w 0 .
22ng
l
£ æ öç ÷-ç ÷ç ÷è ø
ò
T
t dt
c u
Hence, by the Mean Value Theorem for Integrals,
there exists ( )* 00,Ît T such that
( ) ( )
( )
02 2*
0 0
2
*1
0 01
21
1w w
1 w 0 .
2 ng
l
=
£ æ öç ÷-ç ÷ç ÷è ø
ò
T
t t dtT
c u T
We can take v = Aw in (10) and obtain
( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )
* *
*
*
w , w w , w Cw , w
, , w , , w
w , w , w w , , w
, w , w .
n n+ +
= -
= - -
-
g gg
d t A t t A t t A tdt
b u u A t b u t u t A t
b t t A t b t u A t
b u t A tThus, we have
( ) ( ) ( )
( ) ( )
2 2
* *
w 2 w 2 Cw, w 2 w, w, w
2 w, , w 2 , w, w .
n n+ = - -
- -
g
d t A A b Adt
b u A b u A
Using Lemmas 2.1 and 2.2 again, we see that
( )
2 2
0
1 1
2 23
1 1 *2 23
1 1 1 1* *2 2 2 22
w 2 w 2 w w
2 w w w w
2 w w w
2 w w w
n n ¥Ñ+ £
+
+
+
gd t A Adt m
c A A
c A u A
c u u A A
(11)
Thanks to estimate
1
21
ww
l
£ and
1
21
ww .
l
£ A
Hence
From which, by using hypothesis (3) we obtain
( ) 1 32 2 2 21
20 1
w 1 w 2 w w wn
l
¥
æ öÑç ÷
+ - £ç ÷ç ÷è ø
gd t A c Adt m
As
( ) 1 32 2 2 20w w 2 w w w .ng+ £d t A c Adt
Then by using the Young inequality, we get
( ) 42 2 2 2 40 0 3 3
0
1 27w w w w w ,2 2ng ng n g+ £ +
d ct A Adt
From which we deduce
( ) 42 2 60 3 3
1 0
1 27w w w ,2 2ng ln g+ £
d ct Adt
So that
( ) 2 4 241 0 3 3
1 0
1w w w 0,2nl g ln g
æ ö
+ - £ç ÷è ø
cd tdt
Where 4
4
27
.
2
= cc
By using (11) and assumption (4) with
*0 0 01 1
4 24 1
1 ng
l
æ öç ÷
= -ç ÷ç ÷è ø
ck u T
c
For some T
0
> 0, we can deduce
We denote by ( )* * ,Î +¥T t the maximal existence
time for the strong solution W. We define now
( )
4* * 4
1 0 3 3
1 0
*
1 0
1sup , : w2
1 , , . 8
cT t t T s
s t t
nl g ln g
nl g
ìï é ù= Î -í ë ûïî
üé ù³ " Î ýë ûþ
By continuity and (13), we see that T > t*. We show
that T = +∞, which implies in particular that T *=
+∞.
Assume to the contrary that T = +∞. This implies
that *<T T because the solution remains bounded
1 32 2 21
20 1
1 3 1 3* *2 2 2 21 1
4 41 1
1 32 2*2 21 1
2 20 1 1
2 w 2 w w w
2 w w 2 w w
2 w 2 w w w 4 w ,
n
l
l l
n
l l
¥
¥
Ñ£
+ +
Ñ£ + +
g A c A
m
c cu A u A
g cA c A u A
m
( )
2 2*
1 1
2 20 1 1
1 3
2 2
2w 2 1 w
2 w w w .
n
l l
¥
é ùæ öÑê úç ÷
+ - -ê úç ÷ç ÷ê úè øë û
£
gd ct u Adt m
c A
(12)
1 32 2 21
20 1
1 3 1 3* *2 2 2 21 1
4 41 1
1 32 2*2 21 1
2 20 1 1
2 w 2 w w w
2 w w 2 w w
2 w 2 w w w 4 w ,
n
l
l l
n
l l
¥
¥
Ñ£ +
Ñ£
g A c A
m
c cu A u A
g cA c A u A
m
NGÀNH TOÁN HỌC
97Tạp chí Nghiên cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190 Số 4 (67).2019
When t → T. By definition of T, and by (12) we see
that
( ) 2 2 *1 01w w 0, , . 8nl g é ù+ £ " Î ë û
d t A t t Tdt
This deduces that
( ) ( ) 22 * *w w , , . é ù£ " Î ë ût t t t T
In particular we have
( ) 441 0 1 03 3
1 0
1 1w ,2 8nl g nl gln g- ³
c T
and then, by continuity, there is e> 0, such that
*e+ <T T and
( ) 4 *41 0 1 03 3
1 0
1 1w , , .2 8nl g nl g eln g é ù- ³ " Î +ë û
c t t t T
This is a contradiction with the maximality property
of T.
Finally, we have shown that * ,= = +¥T T so that
the strong solution under consideration is global.
Moreover, since T = +∞ we deduce from (14) that
( ) ( ) 22 * *w w , ,a-£ " ³tt t e t t
Where 1 01 .8a nl g=
Now combining (11) and (15), we arrive at
( ) ( )2 2 *w w 0 , ,a-£ " ³tt k e t t
Where
1 2 2
2 02
4 0
1 1
.
3 2
2
= =k
c k
c k
The proof is complete.
(14)
REFERENCES
[1] C.T. Anh and D.T. Quyet (2012), Long-time
behavior for 2D non-autonomous g-Navier-Stokes
equations, Ann. Pol. Math., 103, 277-302.
[2] C.T. Anh, D.T. Quyet and D.T. Tinh (2013),
Existence and finite time approximation of
strong solutions of the 2D g-Navier-Stokes
equations, Acta Math. Vietnam., 28, 413-428.
[3] H. Bae and J. Roh (2004), Existence of solutions
of the g-Navier-Stokes equations, Taiwanese
J. Math., 8, 85-102.
[4] J. Jiang and Y. Hou (2010), Pullback attractor
of 2D non-autonomous g-Navier-Stokes
equations on some bounded domains, App.
Math. Mech. - Engl. Ed., 31, 697-708.
[5] J. Jiang and X. Wang (2013), Global attractor
of 2D autonomous g-Navier-Stokes equations,
Appl. Math. Mech. (English Ed.), 34, 385-394.
[6] M. Kwak, H. Kwean and J. Roh (2006), The
dimension of attractor of the 2D g-Navier-
Stokes equations, J. Math. Anal. Appl., 315,
436-461.
[7] H. Kwean and J. Roh (2005), The global
attractor of the 2D g-Navier-Stokes equations
on some unbounded domains, Commun.
Korean Math. Soc., 20, 731-749.
[8] J. Roh (2005), Dynamics of the g-Navier-Stokes
equations, J. Differential Equations, 211, 452-
484.
[9] J. Roh (2006), Derivation of the g-Navier-
Stokes equations, J. Chungcheon Math. Soc.,
19, 213-218.
[10] D. Wu and J. Tao (2012), The exponential
attractors for the g-Navier-Stokes equations, J.
Funct. Spaces Appl., Art. ID 503454, 12 pp.
(15)
Nguyen Viet Tuan
- Education:
+ 2006: Bachelor of Mathematics and Informatics, Hanoi Pedagogican University 2
+ 2011: Master of Mathematical, Hanoi Pedagogican University 2
+ 2019: PhD of Mathematics, Hanoi Pedagogican University 2
- Working Experience:
+ 2007 to date: Lecturer at Faculty of Basic Sciences, Sao Do University
- Research interests:
+ Stability and stabilization for some evolution equations in fluid mechanics
- Email: nguyentuandhsd@gmail.com
- Phone: 0978 235 234
AUTHORS BIOGRAPHY
Tran Hoang Yen
- Training, reseaching process:
+ In 2004: Graduated BA from English Faculty of Ha Noi University
+ In 2011: Graduated MA from University of Languages and International Studies, Ha
Noi National University majored in Foreign Language Teaching Method
- Current job: Lecturer of Tourism and Foreign Language Faculty, Sao Do University
- Interests: Language, Foreign Language Teaching Methods
- Email: yendhsd@gmail.com
- Tel: 0986596586