+ Từ xa xưa, con người đã biết dùng những vật liệu đơn sơ như đất sét, đất bùn nhào rác, dăm gỗ, cỏ khô băm để làm gạch, đắp tường, dựng vách cho chỗ trú ngụ của mình. Có thể tóm lược các bước hình thành xi măng như sau:
- Người Ai Cập đã dùng vôi tôi làm vật liệu chính.
- Người Hy Lạp trộn thêm vào vôi đất núi lửa ở đảo Santorin, hỗn hợp này đã được các nhà xây dựng thời đó ưu ái nhiều năm.
71 trang |
Chia sẻ: hoang10 | Lượt xem: 700 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Vật liệu xây dựng - Nguồn gốc của xi măng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguồn gốc của xi măng1. Lịch sử hình thành+ Từ xa xưa, con người đã biết dùng những vật liệu đơn sơ như đất sét, đất bùn nhào rác, dăm gỗ, cỏ khô băm để làm gạch, đắp tường, dựng vách cho chỗ trú ngụ của mình. Có thể tóm lược các bước hình thành xi măng như sau:- Người Ai Cập đã dùng vôi tôi làm vật liệu chính.- Người Hy Lạp trộn thêm vào vôi đất núi lửa ở đảo Santorin, hỗn hợp này đã được các nhà xây dựng thời đó ưu ái nhiều năm.1. Lịch sử hình thành- Người La Mã thêm vào loại tro – đất núi lửa Vésuve miền Puzzolles. Về sau này, phún – xuất – thạch núi lửa được dùng làm một loại phụ gia hoạt tính chịu cách nhiệt và cách âm, và trở thành danh từ chung “Pozzolana” (Anh), “Pouzzolane” (Pháp) - Vào năm 1750, kỹ sư Smeaton người Anh, nhận nhiệm vụ xây dựng ngọn hải đăng Eddystone vùng Cornuailles. Ông đã thử nghiệm dùng lần lượt các loại vật liệu như thạch cao, đá vôi, đá phún xuất Và ông khám phá ra rằng loại tốt nhất đó là hỗn hợp nung giữa đá vôi và đất sét.- Hơn 60 năm sau, 1812, một người Pháp tên Louis Vicat hoàn chỉnh điều khám phá của Smeaton, bằng cách xác định vai trò và tỷ lệ đất sét trong hỗn hợp vôi nung nói trên. Và thành quả của ông là bước quyết định ra công thức chế tạo xi măng sau này.- Ít năm sau, 1824, một người Anh tên Joseph Aspdin lấy bằng sáng chế xi măng (bởi từ latinh Caementum : chất kết dính), trên cơ sở nung một hỗn hợp 3 phần đá vôi + 1 đất sét.1. Lịch sử hình thành- Chưa hết, 20 năm sau, Isaac Charles Johnson đẩy thêm một bước nữa bằng cách nâng cao nhiệt độ nung tới mức làm nóng chảy một phần nguyên liệu trước khi kết khối thành “clinker”.- Vào năm 1967 Mông đuyê, một người làm vườn ở Pháp đã lấy dây thép nhỏ quấn quanh chậu hoa cho khỏi vỡ. Sau đó một thời gian ông này lại lấy dây thép kết thành hình chậu hoa và đổ xi măng vào, kết quả tuyệt vời hơn. Từ đó ông giành được quyền sáng chế. Đây chính là cội nguồn của các loại bê tông tấm, xà, ống trong xây dựng và gọi là bê tông ống thép. Từ đây, như chúng ta biết, đã bùng nổ hằng loạt các nhà máy lớn nhỏ với nhiều kiểu lò nung tính năng khác nhau: xi măng đã làm một cuộc cách mạng trong lĩnh vực xây dựng.2. Phát hiện lí thú Trước công nguyên thì người Ai cập cổ dùng mật mía hay nước mía đặc trộn với 1 số chất phụ gia chống lại sự thèm muốn của các loài côn trùng để xây nhà và các kim tự tháp.Người Trung Hoa thì dùng mạch nha với thành phần chủ yếu là tinh bột nóng để xây. Một đều thú vị là tuổi thọ của chúng cao hơn ximăng hiện nay rất nhiều.3. Bí mật về cột trụ xi măng thời tiền sử Ở nơi cách Tân Calêdonia 40 hải lý về phía Nam có một đảo nhỏ gọi là Baien, từ xưa đến nay chưa từng có ai cư ngụ ở đó. Nhưng trên hoang đảo nhỏ này lại có khoảng 400 gò đất kỳ quái. Chúng được xây nên từ cát và đá cao khoảng 2,5-3m, mặt nghiêng khoảng 90m. Trên gò đất không có bất kỳ một loại thực vật nào sinh trưởng, cảnh vật vô cùng hoang vắng. Những người đã từng đến đây cho rằng, đó là các di chỉ từ thời cổ đại. Năm 1960, nhà khảo cổ học Cheliwa đến hòn đảo nhỏ này tiến hành khai quật các di chỉ. Ông đã khám phá một điều ngoài sức tưởng tượng, đó là trên 3 di chỉ cổ ở giữa đều có 1 cột trụ xi măng nằm song song với nhau. Những cột trụ này cao từ 1m đến 2,5m, trong xi măng của cột trụ còn lẫn vỏ ốc, vỏ sò vỡ. Cheliwa vô cùng kinh ngạc bởi ông biết xi măng mới được phát minh từ thế kỷ XIX cho dù là hỗn hợp đất đá xám tương tự như xi măng cũng chỉ được người La Mã cổ đại tìm ra trong khoảng năm 500 đến 600 trước Công nguyên. Ông đã mời những nhà nghiên cứu khoa học đến để dùng phóng xạ kiểm tra các cột trụ này. Trắc nghiệm đã cho thấy, niên đại của những cột trụ xi măng này vào khoảng năm 10950 – 5120 trước Công nguyên. Cũng có thể nói, những cột trụ xi măng của đảo Baien được xuất hiện từ thời kỳ đồ đá, sớm hơn rất nhiều so với thời đại La Mã cổ.3. Bí mật về cột trụ xi măng thời tiền sửĐảo Tân Calêdonia - Nouvelle Calédonie ở phần Tây Nam Thái Bình Dương là một trong những đảo lớn nhất của Nam Thái Bình Dương. Theo ghi chép, năm 1768 người Pháp đã từng đặt chân đến đây, năm 1774 con tàu mẫu hạm của nhà hàng hải nổi tiếng người Anh, James Cook (1729- 1779) đã từng diễu qua hòn đảo nhỏ này. Ông thấy rừng rậm nơi đây dày đặc, cây xanh sinh trưởng khắp nơi, khí hậu trong lành. Đảo Nouvelle Calédonie 3. Bí mật về cột trụ xi măng thời tiền sửCook cảm thấy cảnh tượng nơi đây vô cùng giống với quê hương mình bèn lấy tên cổ của Scotland là Calédonie thêm chữ Tân (Nouvelle) ở trước để đặt cho hòn đảo này. Bởi vậy, đảo ấy có tên là Tân Calêdonia. Cũng có thể nói trước thời gian đó, đảo Tân Calêdonia không có người cư trú, đây là một vùng hoang vắng nguyên sơ không hề có ánh lửa của con người, ngay cả bây giờ cũng không có ai sống trên hoang đảo Baien này. Cho đến năm 1792, người Pháp mới tiến hành khám phá đảo lần đầu tiên, sau này họ biến nơi đây thành nơi lưu đày tội phạm. Sau 100 năm, đảo Baien mới được chính thức coi là lãnh địa vĩnh viễn của Pháp. Vậy, ai là người vận dụng kỹ thuật phức tạp làm ra xi măng 5000 trước Công nguyên. Chẳng lẽ không có ai trên đảo này làm nên những cột trụ xi măng ư?Theo phán đoán, phương pháp chế tác đương thời là đắp các gò đất, sau đó rót xi măng vào làm cho đông cứng lại. Nhưng xung quanh những cột xi măng này lại không hề có bất cứ dấu tích nào về hoạt động của con người. Bởi vậy, người ta vẫn không có phương pháp nào biết được ai là người chế tạo nên các cột trụ xi măng. Có thể nói, những cột trụ xi măng này có tác dụng gì vẫn là một trong những điều khó giải thích trong kho tàng bí mật của nhân loại.4. Ở Việt Nam Ngành sản xuất xi măng ở nước ta đã được hình thành từ rất sớm. Bắt đầu là việc khởi công xây dựng nhà máy xi măng Hải Phòng vào ngày 25/12/1889 Một thế kỷ trước đây xi măng Việt Nam mới chỉ có một thương hiệu con Rồng nhưng đã nổi tiếng ở trong nước và một số vùng Viễn Đông, Vlađivostoc (LB Nga), JAWA (Inđônêxia), Xingapo, Hoa Nam (Trung Quốc) Sau ngày giải phóng miền Nam, năm 1975 lại có thêm thương hiệu xi măng Hà Tiên, đến nay ngành xi măng nước ta đã có thêm hàng loạt những thương hiệu nổi tiếng như: Xi măng Bỉm Sơn nhãn hiệu Con Voi, xi măng Hoàng Thạch nhãn hiệu con Sư Tử, xi măng Hà Tiên I,II, Bút Sơn, Hoàng Mai, Tam Điệp, Nghi Sơn, Chinfon Cấu tạo, công thức hóa học của XM Portland+ Xi măng Portland là một hỗn hợp nghiền mịn của clinker, thạch cao: CaO = 60-67 %; SiO2 = 21-24 %; Fe2O3 = 2-5 %; Al2O3= 4-7 %; SO3 200m) = 3-4O = 1-2 v/ph (4)Lớp trộn(5)Nghiền thô (6)Túi lọc bụi(7)Gia nhiệt(8)Lò nung (9)Máy làm lạnh Nghiền xi măngLàm nguội ckinker Hệ thống đóng gói bao xi măngHình ảnh nhà máy xi măng Chinfon - Hải PhòngNhà máy xi măng Hải Phòng / Chifon Haiphong Cement Plant. Tại thôn Tràng Kênh, thị trấn Minh Đức, huyện Thủy Nguyên, thành phố Hải Phòng Công suất 4.000 tấn Clinker/ngàyHình ảnh nhà máy xi măng Chinfon - Hải PhòngPhòng phân tích hóa / The Chemical Room. Phòng phân tích cơ lý / The Mechanical Physical Room Phòng điều khiển trung tâm / Central Control Room Những tính chất chủ yếu đối với các thành phần khoáng vật- Khoáng vật C3S: tốc độ thủy hóa tương đối nhanh, nhiệt thủy hóa tương đối lớn, ít co thể tích và khả năng phát triển cường độ lớn nhất so với các thành phần khác. Vì vậy C3S là thành phần khoáng vật quan trọng nhất, chiếm tỷ lệ cao nhất trong xi măng.- Khoáng vật C2S: tốc độ thủy hóa chậm, nhiệt thủy hóa thấp, ít có thể tích; khả năng phát triển cường độ ở thời gian đầu chậm, về sau nhanh.- Khoáng vật C3A: tốc độ thủy hóa rất nhanh, nhiệt thủy hóa rất lớn, có thể tích nhiều, ngưng kết rất nhanh, nhưng khả năng phát triển cường độ lại kém nhất trong 4 thành phần khoáng vật.- Khoáng vật C4AF: tốc độ thủy hóa tương đối nhanh, nhiệt thủy hóa trung bình, thể tích co tương đối nhiều, khả năng phát triển cường độ trung bình, nhưng tăng rõ rệt ở thời gian về sau.Các hệ số chất lượng của xi măng 1. Hệ số silic (n = 1,7 – 3,5): 2. Hệ số nhôm (p = 1-3):3. Hệ số bão hòa vôI (KH = 0,82-0,95):Ngưng kết và rắn chắc của xi măng pooclăng1. Thời kỳ hòa tanKhi trộn xi măng với nước, trên bề mặt các hạt xi măng, các thành phần khoáng vật chủ yếu C3S, C2S, C3A, C4AF của xi măng sẽ tác dụng với nước theo các phản ứng thủy phân và thủy hóa sau đây:3CaO.SiO2 + (m +1)H2O Ca(OH)2 + 2CaO.SiO2.mH2O2CaO.SiO2 + mH2O 2CaO.SiO2.mH2O3CaO.Al2O3 + 6H2O 3CaO.Al2O3.6H2O4CaO.Al2O3.Fe2O3 + nH2O 3CaO.Al2O3.6H2O + CaO.Fe2O3.mH2OTrong các hợp chất mới tạo thành, có Ca(OH)2 và 3CaO.Al2O3.6H2O là dễ hòa tan nhất, nên tan ngay vào nước, làm xuất hiện lớp xi măng mới tiếp tục tác dụng với nước rồi tiếp tục hòa tan. Lượng nước trong vữa xi măng có hạn, nên dung dịch nhanh chóng đạt tới trạng thái bão hòa.Ngưng kết và rắn chắc của xi măng pooclăng2. Thời kỳ hóa keoTrong dung dịch đã bão hòa, các thành phần Ca(OH)2 và 3CaO.Al2O3.6H2O tiếp tục sinh ra, nhưng không hòa tan được nữa cùng với các thành phần khác như 2CaO.SiO2.mH2O vốn ít hòa tan đều tồn tại dưới dạng các hạt nhỏ phân tán trong dung dịch tạo thành thể keo phân tán bao quanh các hạt xi măng. Phần xi măng bên trong các hạt tiếp tục thủy phân và thủy hóa, nên chất keo sinh ra ngày càng nhiều. Đồng thời với hiện tượng bay hơi nước tự do trong vữa xi măng làm cho các hạt keo phân tán ở trên ngưng tụ lại thành những hạt lớn hơn và tạo thành thể keo ngưng. Thể keo ngưng không ngừng tăng, vữa xi măng mất dần tính dẻo và dần dần trở nên đông đặc, tuy nhiên lúc này vẫn chưa có cường độ.Ngưng kết và rắn chắc của xi măng pooclăng3. Thời kỳ kết tinhTrong thể keo ngưng xuất hiện các mầm kết tinh từ Ca(OH)2 và 3CaO.Al2O3.6H2O. Các mầm kết tinh phát triển dần lên thành các tinh thể cắm vào thể keo ngưng, đan chéo và gắn kết với nhau tạo thành bộ xương cứng làm cho vữa xi măng bắt đầu có cường độ.Nước tự do bay hơi nên ngày càng ít đi. Số lượng tinh thể ngày càng nhiều lên, do đó cường độ xi măng dần tăng lên rõ rệt.Thành phần 2CaO.SiO2.mH2O tồn tại ở thể keo khá lâu, dần chuyển sang kết tinh, làm cho cường độ xi măng tăng lên ở thời gian về sau.Các hiện tượng hòa tan, hóa keo và kết tinh của vữa xi măng xảy ra xen kẽ, nối tiếp lẫn nhau, trong khi có một số đã kết tinh thì vẫn có một số đang ở thể keo, một số mới bắt đầu tác dụng với nước. Cứ thế nối tiếp, diễn ra cho đến khi toàn bộ các hạt xi măng thủy phân và thủy hóa hết.Thực nghiệm chứng tỏ rằng hàng chục năm vẫn còn những hạt xi măng đang tiếp tục thủy phân và thủy hóa.Ngoài các quá trình trên, quá trình cacbônat hóa của thành phần Ca(OH)2 cũng góp phần tăng thêm sự rắn chắc của vữa xi măng.Tên chỉ tiêuMứcPC30PC40PC501. Giíi h¹n bÒn nÐn, N/mm2, kh«ng nhá h¬n:- sau 3 ngµy- sau 28 ngµy 1630214031502. §é nghiÒn mÞn:- phÇn cßn l¹i trªn sµng 0.08mm, %, kh«ng lín h¬n- bÒ mÆt riªng x¸c ®Þnh theo ph¬ng phaps Blaine cm2/g, kh«ng nhá h¬n 1525001525001228003. Thêi gian ®«ng kÕt,- B¾t ®Çu, phót, kh«ng sím h¬n:- KÕt thóc, giê, kh«ng muén h¬n: 45104. §é æn ®Þnh thÓ tÝch x¸c ®Þnh theo ph¬ng ph¸p Lơ Satolie, mm, kh«ng lín h¬n105. Hµm lîng anhydric sunfuric (SO3), %, kh«ng lín h¬n 3,06. Hµm lîng mÊt khi nung (MKN), %, kh«ng lín h¬n 5,0Chất lượng của xi măng pooc lăng đối với từng mác được quy định theo bảng sau:Xi măng pooclăng - phõn loại+ Xi măng đ−ợc phân loại theo các đặc tính sau: (TCVN 5439-1991) - Loại XM clanhke và thành phần của XM. - Độ bền (mỏc). - Tốc độ đúng rắn. - Thời gian đụng kết. - Cỏc tớnh chất đặc biệt.Xi măng đ−ợc phân loại theo các đặc tính sau: (TCVN 5439-1991)Theo loại clanhke và thành phần được phân ra:- Xi măng trên cơ sở clanhke xi măng poóclăng + Xi măng poóclăng (không có phụ gia khoáng) + Xi măng poóclăng có phụ gia (với tỉ lệ phụ gia khoáng hoạt tính không lớn hơn 20%) + Xi măng poóclăng xỉ (với tỉ lệ phụ gia xỉ hạt lớn hơn 20%) + Xi măng poóclăng pudôlan (với tỉ lệ phụ gia pudôlan lớn hơn 20%)- Xi măng trên cơ sở clanhke xi măng alumin + Xi măng alumin có hàm lượng Al2O3 lớn hơn 30% và nhỏ hơn 60% + Xi măng giàu alumin có hàm lượng Al2O3 từ 60% trở lên.Xi măng đ−ợc phân loại theo các đặc tính sau: (TCVN 5439-1991)Theo độ bền (mác) xi măng:Nhãm theo ®é bÒn (m¸c)Yªu cÇu vÒ ®é bÒn tiªu chuÈn khi nÐn (MPa) khi thö cã sö dôngC¸t nhiÒu cì h¹tC¸t mét cì h¹tM¸c cao M¸c thêng M¸c thÊp Tõ 45 trë lªnTõ 25 ®Õn nhá h¬n 45Nhá h¬n 25 Tõ 50 trë lªnTõ 30 ®Õn nhá h¬n 50Nhá h¬n 30Xi măng đ−ợc phân loại theo các đặc tính sau: (TCVN 5439-1991)- Theo tốc độ đóng rắn xi măng trên cơ sở clanhke xi măng poóclăng được phân ra + Loại đóng rắn bình thường và chậm: khi độ bền chuẩn đạt được sau 28 ngày đêm. + Loại đóng rắn nhanh: khi độ bền sau 3 ngày đêm đạt được không dưới 55% của độ bền tiêu chuẩn sau 28 ngày đêm;- Theo thời gian đông kết xi măng được phân ra + Đông kết chậm: khi thời gian bắt đầu đông kết quy định trên 2 giờ. + Đông kết bình thường: khi thời gian bắt đầu đông kết quy định từ 45 phút đến 2 giờ. + Đông kết nhanh: khi thời gian bắt đầu đông kết quy định dưới 45 phút.Xi măng đ−ợc phân loại theo các đặc tính sau: (TCVN 5439-1991)Tuỳ thuộc vào các tính chất đặc biệt, xi măng được phân theo + Độ bền sunfat (sử dụng clanhke có thành phần định mức) + Biến dạng thể tính khi đóng rắn (với độ nở và co ngót chuẩn của xi măng). + Độ toả nhiệt (với độ toả nhiệt chuẩn của xi măng) + Tính chất trang trí (với độ trắng hoặc màu theo mẫu chuẩn). + Tính chất phun, trám (theo nhưng chỉ tiêu chất lượng, chỉ tiêu này xác định sự thích hợp của xi măng trong việc phun, trám các giếng dầu khí và các giếng khác).Xi măng pooclăng - phõn loạiTheo tiêu chuẩn của Mỹ ASTM C150 - 94, Xi măng poóclăng được phân thành 8 loại như sau:Loại I: Xi măng thường khi không có yêu cầu đặc biệt.Loại IA: Như loại I, nhưng có khả năng cuốn khí.Loại II: Xi măng dùng trong trường hợp chung, nhưng có khả năng bền sunfat vừa và nhiệt thủy hoá vừa.Loại IIA: Như loại II, nhưng có thêm yêu cầu cuốn khí.Loại III: Dùng trong trường hợp yêu cầu cường độ ban đầu cao.Loại IIIA: Như loại III, nhưng có thêm yêu cầu cuốn khí.Loại IV: Dùng trong trường hợp yêu cầu nhiệt thủy hoá thấp.Loại V: Dùng trong trường hợp yêu cầu độ bền sunfat cao.Xi măng pooclăng - phõn loạiNgoài ra Mỹ cũng có những loại xi măng đặc biệt khác (theo ASTM C595 - 92a): - Xi măng Pooclăng trắng - Xi măng Pooclăng - Xỉ - Xi măng Pooclăng - Puzơlan - Xi măng xõy trỏt - Xi măng Pooclăng đặc biệt: Xi măng giếng dầu là xi măng được dựng để hàn kớn cỏc giếng dầu. Xi măng này thường đụng kết chậm và chịu được ỏp suất và nhiệt độ cao. Xi măng chống thấm nước 20 chủng loại xi măng và công nghệ sản xuất Tác giả: PGS.TS. Hoàng Văn Phong. Nhà xuất bản: Khoa học và kỹ thuật. Năm 2006. Số trang: 171 1. Xi măng Portland thông dung PC. 2. Xi măng Portland hỗn hợp PCB. 3. Xi măng Portland - puzolan PCpu 4. Xi măng Portland - xỉ lò cao. 5. Xi măng Portland bền sunphat. 6. Xi măng Portland toả nhiệt ít PCLH 7. Xi măng Portland mác cao. 8. Xi măng Portland đóng rắn nhanh. 9. Xi măng Portland giãn nở. 10. Xi măng trắng và xi măng màu. 11. Xi măng Portland dàmh cho xeo tấm lợp uốn sóng amiăng - xi măng. 12. Xi măng Portland cho bê tông mặt đường bộ và sân bay. 13. Xi măng alumin CA. 14. Xi măng chống phóng xạ. 15. Xi măng giếng khoan dầu khí. 16. Xi măng sunphua belit nhôm. 17. Xi măng chịu axit. 18. Xi măng manhê và xi măng dolomi. 19. Xi măng Romans. 20. Xi măng chịu lửa siêu cao. Ảnh hưởng của xi măng đến các tính chất của bê tôngSự nứt nẻ do nhiệtTính dễ đổCường độỔn định thể tíchTính thấm nướcChống xâm thực hóa họcPhản ứng Xi măng - Cốt liệuSự nứt nẻ do nhiệtNhiệt thủy hoá, cal/g (KJ/kg); C3S: 120 (502); C2S: 62 (259); C3A: 207 (865); C4AF: 100 (418); CaO (vôi tự do): 279 (1166)Đối với các công trình bê tông khối lớn, nên dùng loại xi măng có nhiệt thủy hoá thấp (nhiệt thủy hoá sau 7 ngày 60 Cal/g), nếu không có thể dùng xi măng có nhiệt thủy hoá vừa (nhiệt thủy hoá sau 7 ngày 70 Cal/g), hoặc nếu không có phải pha thêm phụ gia khoáng vào trong xi măng poóclăng để hạ thấp nhiệt thủy hoá.Tính dễ đổXi măng là thành phần nhỏ nhất trong bê tông, nên lượng xi măng trong hỗn hợp bê tông có tác dụng lớn đối với độ dẻo và tính dễ đổ của hỗn hợp bê tông. Hỗn hợp bê tông ít xi măng (bê tông gầy) kém dẻo, khó đổ và khó hoàn thiện. Hỗn hợp bê tông nhiều xi măng (bê tông béo) sẽ có tính dính, dẻo và dễ đổ hơn. Tuy nhiên hỗn hợp bê tông quá béo sẽ dính nhiều, lại khó thi công.Độ mịn của xi măng cũng ảnh hưởng đến tính dễ đổ của bê tông, nhưng ít hơn ảnh hưởng của hàm lượng xi măng. Hàm lượng xi măng ít cũng làm cho tính dính kết kém, tiết nước nhiều và phân tầng. Độ mịn của xi măng tăng lên, làm cho hỗn hợp dính kết tốt hơn, giảm lượng nước yêu cầu để đạt được độ sụt đã cho, dẫn đến giảm phân tầng và tiết nước.Cường độThành phần khoáng của xi măng có ảnh hưởng đến cường độ xi măng và bê tông. Thành phần C3S tăng cường độ sau 10 đến 20 giờ đến 28 ngày. Thành phần C2S có ảnh hưởng nhiều đối với cường độ về sau trong môi trường có độ ẩm thích hợp. Thành phần C3A đóng góp chủ yếu vào việc tăng cường độ trong 24 giờ và sớm hơn, vì bản thân C3A thủy hoá nhanh. Thành phần C4AF ít ảnh hưởng đến cường độ hơn.Độ mịn cao làm tăng cường độ xi măng ở tuổi ban đầu đến khoảng 28 ngày, mạnh nhất trong 10 đến 20 giờ đầu, về sau tăng ít đi. ở tuổi 2 đến 3 tháng trong điều kiện ẩm ướt, độ mịn cao cũng cho cường độ gần như cường độ của xi măng có độ mịn thông thường (độ mịn Blaine khoảng 3500 cm2/g).Thông thường cường độ xi măng poóclăng cao hơn cường độ của xi măng hỗn hợp ở tuổi 7 ngày hoặc sớm hơn và ngang bằng hoặc hơi thấp hơn ở tuổi về sau khi có cùng tỷ lệ N/X và độ mịn.Ổn định thể tíchBê tông mới trộn thay đổi thể tích do tiết nước, do nhiệt độ biến đổi, do các phản ứng thủy hoá của xi măng và do khô đi. Độ tiết nước giảm đi khi xi măng có độ mịn, có nhiều hạt cỡ nhỏ nhất, hàm lượng kiềm tăng và hàm lượng C3A tăng. Xi măng có hàm lượng CaO tự do hoặc MgO quá mức bình thường có khả năng trương nở sau, gây bất lợi khi các thành phần này thuỷ hoá. Xi măng bị nở nhiều như vậy là xi măng không đạt yêu cầu. Sự bốc hơi nước từ mặt bê tông trong hoặc sau quá trình hoàn thiện, nhưng trước khi kết thúc đông kết là nguyên nhân quan trọng của sự nứt nẻ do co mềm. Tốc độ co khô của bê tông trong quá trình khô đi phụ thuộc vào nhiều yếu tố, trong đó có thành phần xi măng. Xi măng có ảnh hưởng nhiều đối với độ co khô ; tác dụng này nhỏ nhất, khi trong xi măng có hàm lượng S03 tối ưu.Tính thấm nướcXi măng hạt thô tạo ra độ rỗng cao hơn xi măng hạt mịn. Độ thấm nước của bê tông phụ thuộc vào độ thấm của thành phần đá xi măng và cốt liệu, cũng như tỷ lệ của chúng trong bê tông. Có hai loại lỗ rỗng trong đá xi măng: Lỗ rỗng gen nằm giữa các phần tử gen, rất nhỏ, đường kính khoảng 0,5 đến 3,0 m; lỗ rỗng mao quản lớn hơn và được phân bố không đều khắp trong đá xi măng, đó là các dấu tích còn lại của các khoảng trống chứa đầy nước đã bay hơi. Độ rỗng mao quản tùy thuộc vào tỉ lệ N/X lúc đầu và mức độ thủy hoá xi măng. Khi mức độ thủy hoá tăng lên, độ rỗng nhỏ đi và độ thấm cũng giảm. Chống xâm thực hóa họcYêu cầu đầu tiên đối với bê tông bền xâm thực hoá học là dùng xi măng thích hợp, xi măng pha puzơlan, xi măng pha xỉ, xi măng pha muội silic... Xi măng poóclăng với hàm lượng C3A cao dễ bị ăn mòn sunfat có trong đất, nước biển, nước ngầm. Vì vậy thường yêu cầu dùng xi măng có hàm lượng C3A thấp hơn ( 10%) cho bê tông trong môi trường sunfat, hoặc dùng xi măng đặc biệt chống sunfat. Phản ứng Xi măng - Cốt liệu+ Phản ứng Kiềm - Silíc:Khi trong xi măng có hàm lượng kiềm nhiều quá mức qui định và trong cốt liệu có hàm lượng SiO2 vô định hình sẽ sinh ra phản ứng kiềm - silic. Sản phẩm của phản ứng kiềm - silic có thể là gen canxi - kiềm - silic trương nở đến một mức độ giới hạn hoặc gen kiềm - silic ngậm nước có thể hút nước và nở nhiều hơn, có thể gây nứt nẻ bê tông. Nếu trong cốt liệu có silic vô định hình, phải thí nghiệm kiểm tra khả năng sử dụng và nên ưu tiên dùng các biện pháp sau đây để phòng ngừa tác hại của phản ứng kiềm - silic: - Dùng xi măng có tổng hàm lượng kiềm được biểu thị bằng % (Na20 + 0,658K20) không vượt quá 0,6%; - Nếu xi măng có tổng hàm lượng kiềm cao hơn 0,6% thì pha thêm puzơlan với số lượng đủ để ngăn ngừa sự nở quá nhiều của bê tông.Phản ứng Xi măng - Cốt liệu+ Phản ứng kiềm - đá cacbonatPhản ứng kiềm - đá cacbonat