Computer simulation Some simulation techniques for solving some of the systems of equations Solution of (nonlinear) algebraic equations Ordinary differential equations (ODEs) Partial differential equations (PDEs) Numerical methods Iterative methods Discrete difference methods Femlab, Fortran, Ansys Matlab/Simulink Computer simulation Computer programming Assume that you know some computer programming language We are not interested in generating the most efficient and elegant code but in solving problems (from point of view of engineers) Including extensive comment statements Use of symbols (the same ones in the equations describing the systems) Debugging (for mistakes in coding and/or in logic)
46 trang |
Chia sẻ: thanhle95 | Lượt xem: 624 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Bài giảng Mô hình hóa, mô phỏng và tối ưu hóa các quá trình hóa học - Phần 2: Mô phỏng máy tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Phần 2: mô phỏng máy tính
Modeling, simulation and optimization for chemical process
Instructor: Hoang Ngoc Ha
Email: ha.hoang@hcmut.edu.vn
Bộ môn QT&TB
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Introduction
Numerical
Analysis
Computer
Programming
SIMULATION
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Computer simulation
Some simulation techniques for solving some
of the systems of equations
Solution of (nonlinear) algebraic equations
Ordinary differential equations (ODEs)
Partial differential equations (PDEs)
Numerical methods
Iterative methods
Discrete difference methods
Femlab, Fortran, Ansys Matlab/Simulink
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Computer simulation
Computer programming
Assume that you know some computer
programming language
We are not interested in generating the most
efficient and elegant code but in solving problems
(from point of view of engineers)
Including extensive comment statements
Use of symbols (the same ones in the equations
describing the systems)
Debugging (for mistakes in coding and/or in logic)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Computer simulation
Example:
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Computer simulation
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Computer simulation
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Computer simulation
Interval halving (chia đôi khoảng)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Computer simulation
This problem can be formulated under the
following form:
The goal is to find the solution of this
nonlinear equations (in ONE VARIABLE)
Tools (Iterative methods)
Bisection method (phương pháp phân đoạn)
Newton’s (or Newton-Raphson) method
f(x) = 0, x ∈ R
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Iterative method
Intermediate value theorem
If f is a real-valued continuous function on the
interval [a, b], and u is a number between f(a) and
f(b), then there is a such that f(c) = uc ∈ [a, b]
If f(a) and f(b) are of opposite sign, there exist a number p in [a, b] with f(p)=0
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Iterative method
Bisection method
Computer programming: Matlab
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Iterative method
Newton’s method
Numerical solutions of nonlinear systems of equations (of
SEVERAL VARIABLES)Î (See Ref.)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Computer simulation
Interpolation and polynomial approximation
Interpolation and the Lagrange polynomial
Cubic spline interpolation
Numerical differentiation and intergration
Numerical differentiation
Richardson’s extrapolation
(See Ref.)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
y(t)
ttN
x
y(tN )x
t0
y(t0)
x
t1
y(t1)
Interpolation
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Tools:
Euler’s method
Higher-Order Taylor methods
Runge-Kutta methods
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Euler’s method
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Euler’s method
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Example
Exact solution?
y(t) = −0.5 exp(t) + (t+ 1)2
P/p Euler n=10?
y0 = y − t2 + 1, t ∈ [0 2]
y(0) = 0.5
Approximate solution?
n = 10⇒ h = b−a
n
= 0.2
Computer programming: Matlab
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Local truncation error
The local truncation error in Euler’s method is O(h)
Definition
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Higher-Order Taylor methods
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Higher-Order Taylor methods
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Runge-Kutta methods
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Runge-Kutta methods
Xây dựng công thức tính theo mà không
phải đạo hàm « tay », cần xấp xỉ mà không
dùng đạo hàm với
Minh họa qua k=2
wi+1 wi
T (k)
O(hk)
f(t, y)
T (2)(t, y) = f(t, y) + h
2
f 0(t, y)
f 0(t, y) = f 0t(t, y) + f
0
y(t, y)y
0(t)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Như vậy
Cần tìm với sai số đểa1,α1,β1
a1f(t+ α1, y + β1) ' T (2)(t, y)
O(h2)
T (2)(t, y) = f(t, y) + h
2
f 0t(t, y) +
h
2
f 0y(t, y)f(t, y)
f(t+ α1, y + β1) ' f(t, y) + f 0t(t, y)α1
+f 0y(t, y)β1
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Cần chọn
Đồng nhất hai vế
a1f(t, y) + a1α1f 0t(t, y) + a1β1f
0
y(t, y) =
f(t, y) + h2 f
0
t(t, y) +
h
2 f
0
y(t, y)f(t, y)
⎧
⎨
⎩
a1 = 1
a1α1 = h2
a1β1 = h2 f(t, y)
⎧
⎨
⎩
a1 = 1
α1 = h2
β1 = h2 f(t, y)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Sơ đồ trung điểm (R_K bậc 2)
wi+1 = wi + hT
(2)(ti, wi)
wi+1 = wi + h
h
f(ti +
h
2 , wi +
h
2 f(ti, wi))
i
⎧
⎪⎪⎨
⎪⎪⎩
w0 = α
k1 =
h
2 f(ti, wi)
k2 = hf(ti +
h
2
, wi + k1)
wi+1 = wi + k2
Computer programming: Matlab
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Ordinary
Differential Equations (ODEs)
Sơ đồ R_K bậc 4
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
w0 = α
k1 = hf(ti, wi)
k2 = hf(ti +
h
2 , wi +
k1
2 )
k3 = hf(ti +
h
2
, wi +
k2
2
)
k4 = hf(ti + h,wi + k3)
wi+1 = wi +
1
6 (k1 + 2k2 + 2k3 + k4)
Về nhà tự đọc R_K cho hệ và viết chương trình R_K cho hệ
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Numerical intergration of Partial
Differential Equations (PDEs)
Click here
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Giới thiệu chung
u = u(x . . . , t) một đại lượng vật lý của hệ khảo sát
n chemical species
Inlet material and/or
energetic flux
Outlet material
and/or energetic flux
P
k νkSk = 0
dV
{C, T . . . } HỆ PHÂN BỐ
Profile
Local observation
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Ba dạng phương trình đạo hàm riêng cơ
bản
Động học biến hệ thống có
thể thuộc về các dạng phương trình sau:
u = u(x . . . , t)
Phương trình elliptic (tĩnh-static)
∂2u
∂x2 +
∂2u
∂y2 = f(x, y)
P/t parabolic (b/toán truyền nhiệt)
∂u
∂t = a
2 ∂2u
∂x2
Phương trình hyperbolic (b/toán truyền sóng)
∂2u
∂t2 = a
2 ∂2u
∂x2
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Ba dạng phương trình đạo hàm riêng cơ
bản
Phương pháp tìm nghiệm
Phương pháp giải tích
Phương pháp số
Ý tưởng: xấp xỉ sai phân các đạo hàm riêng tại các điểm rời rạc (kg,tg)
và tính giá trị của tại đóu = u(x . . . , t)
∂u(x,t)
∂t ≈
u(x,t+∆t)−u(x,t)
∆t
x
•
∆t
(x, t)
•
(x,∆t+ t)t
u(x, t)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Xấp xỉ sai phân
∂2u(x,t)
∂x2 ≈
u(x+∆x,t)−2u(x,t)+u(x−∆x,t)
(∆x)2
(x, t)
• •(x+∆x, t)(x−∆x, t)
t
•
∆x
x
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Xấp xỉ sai phân
• ••
x
y
P1
P = (x, y)
∆x P
•
•
∆y P3
P2
P4
∂2u(P )
∂x2 +
∂2u(P )
∂y2 ≈
u(P1)+u(P2)+u(P3)+u(P4)−4u(P )
h2
h = ∆x = ∆y
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN ELLIPTIC
Bài toán elliptic với điều kiện biên Dirichlet(
∆u = ∂
2u
∂x2 +
∂2u
∂y2 = f(x, y), (x, y) ∈ Ω ⊂ R2
u(x, y) = g(x, y), (x, y) ∈ Γ
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN ELLIPTIC
Phân hoạch và tạo lưới : chia nhỏ bởi
các đường thẳng // với Ox và Oy
Ω Ω
h = ∆x = ∆y
Tạo lưới bước chia cách đều
Kí hiệu P1,P2, P3 và P4 là 4
điểm rời rạc x/q P
∆u(P ) ≈ u(P1)+u(P2)+u(P3)+u(P4)−4u(P )
h2
Lần lượt thay vào phương trình elliptic, sử
dụng công thức xấp xỉ & điều kiên biên
Pk = (xk, yk)
Hệ PTTT ẩn uk = u(Pk)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN ELLIPTIC
Example
Lưới 4 nút ẩn đánh số 4 giá trị cần tìm. SD PTSP & Giá trị trên biên Hệ PTTT
Mô phỏng Matlab
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN PARABOLIC (mô hình
truyền nhiệt)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN PARABOLIC (mô hình
truyền nhiệt)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Mức thứ k: t = k∆t
Mức thứ 0: đã biếtu(0)
Mức thứ 1: chưa biếtu(1)
BÀI TOÁN PARABOLIC (mô hình
truyền nhiệt)
Phân hoạch và xấp xỉ
Chia cách đều bước và∆x ∆t
u(k) = (. . . uki . . . )
Xấp xỉ đạo hàm riêng cấp 1: TIẾN - LÙI∂u(x,t)
∂t
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN PARABOLIC (mô hình
truyền nhiệt)
Ví dụ
Sơ đồ hiện (s/p tiến) Sơ đồ ẩn (s/p lùi)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN PARABOLIC (mô hình
truyền nhiệt tổng quát)
Miền Ω = {(x, t)|0 ≤ x ≤ 1, t ≥ 0}
Sai phân tiến & Sai phân lùi
Xấp xỉ ∂u
∂t ,
∂u
∂x ,
∂2u
∂x2
& ĐK biên, đầu Giá trị u tại các điểm lưới
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN PARABOLIC (mô hình
truyền nhiệt)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN PARABOLIC (mô hình
truyền nhiệt)
Kí hiệu u(k) = [uk1 . . . u
k
n], f
(k) = [fk1 . . . f
k
n ]
CuuDuongThanCong.com https://fb.com/tailieudientucntt
BÀI TOÁN PARABOLIC (mô hình
truyền nhiệt)
Sơ đồ Crank-Nicholson
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Outline
General introduction
Structure and operation of chemical engineering
systems
What is a chemical process?
Motivation examples
Part I: Process modeling
Part II: Computer simulation
Part III: Optimization of chemical processes
CuuDuongThanCong.com https://fb.com/tailieudientucntt