Bài giảng Sinh thống kê
• Dữ liệu: –Số đo hay quan sát một biến số • Biến số: –Đặc trưng được khảo sát đo đạt –Có thể có nhiều trị số khác nhau từ đối tượng nầy đến đối tượng khác
Bạn đang xem trước 20 trang tài liệu Bài giảng Sinh thống kê, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
© 2006
1
Sinh thống kê
GS TS Lê Hoàng Ninh
© 2006Evidence-based Chiropractic 2
Dịnh nghỉa một số thuật ngữ
trong sinh thống kê
• Dữ liệu:
– Số đo hay quan sát một biến số
• Biến số:
– Đặc trưng được khảo sát đo đạt
– Có thể có nhiều trị số khác nhau từ đối tượng
nầy đến đối tượng khác
© 2006Evidence-based Chiropractic 3
Định nghĩa từ dùng trong
thống kê
• Biến số độc lập
– Có trước biến số phụ thuộc; căn nguyên/
nguyên nhân của một hệ quả nào đó
– Thuốc lá -> ung thư phổi
– Thuốc A -> khỏi bệnh
• Biến số phụ thuộc:
– Số đo hệ quả,/ kết cuộc
– Trị số phụ thuộc và biến độc lập
© 2006Evidence-based Chiropractic 4
Từ ….
• Tham số (Parameters)
– Dữ liệu/ số đo trên quần thể (Summary data
from a population)
• Số thống kê (Statistics)
– Dữ liệu/ số đo trên mẫu (Summary data from
a sample)
© 2006Evidence-based Chiropractic 5
Quần thể
• Quần thể là tập hợp các cá thể mà mẫu
được lấy ra
– e.g., headache patients in a chiropractic
office; automobile crash victims in an
emergency room
• Trong nghiên cứu, không thể đo đạt khảo
sát trên toàn bộ quần thể
• Do vậy cần phải lấy mẫu ( tổ hợp con của
quần thể)
© 2006Evidence-based Chiropractic 6
Mẫu ngẫu nhiên
• Các đối tượng được lấy ra từ quần thể để
sao cho các cá thể có cơ hội như nhau
được chọn ra
• Mẫu ngẫu nhiên thì đại diện cho quần thể
• Mẫu không ngẫu nhiên thì không đại diện
– May be biased regarding age, severity of the
condition, socioeconomic status etc.
© 2006Evidence-based Chiropractic 7
Mẫu ngẫu nhiên
• Mẫu ngẫu nhiên hiếm có trong các nghiên
cứu chăm sóc bệnh nhân
• Thay vào đó, dùng phân phối ngẫu nhiên
vào 2 nhóm điều trị và nhóm chứng
– Each person has an equal chance of being
assigned to either of the groups
• Phân phối ngẫu nhiên vào các nhóm =
randomization
© 2006Evidence-based Chiropractic 8
Thống kê mô tả (DSs)
• Cách tóm tắt dữ liệu
• Minh họa bộ dữ liệu = shape, central
tendency, and variability of a set of data
– The shape of data has to do with the
frequencies of the values of observations
© 2006Evidence-based Chiropractic 9
Thống kê mô tả
– Khuynh hướng trung tâm : vị trí chính giữa bộ
dữ liệu
– Khuynh hướng biến thiên: các trị số phía dưới
, phía trên trị số trung tâm
• Dispersion
• Thống kê mô tả khác biệt với thống kê suy
lý
– Thống kê mô tả không thể kiểm định giả
thuyết
© 2006Evidence-based Chiropractic 10
MỘT BỘ DỮ LiỆU
Case # Visits
1 7
2 2
3 2
4 3
5 4
6 3
7 5
8 3
9 4
10 6
11 2
12 3
13 7
14 4
• Distribution provides a summary of:
– Frequencies of each of the values
• 2 – 3
• 3 – 4
• 4 – 3
• 5 – 1
• 6 – 1
• 7 – 2
– Ranges of values
• Lowest = 2
• Highest = 7
etc.
© 2006Evidence-based Chiropractic 11
Bảng phân phối tần số
Frequency Percent Cumulative %
• 2 3 21.4 21.4
• 3 4 28.6 50.0
• 4 3 21.4 71.4
• 5 1 7.1 78.5
• 6 1 7.1 85.6
• 7 2 14.3 100.0
© 2006Evidence-based Chiropractic 12
PHÂN PHỐI TẦN SỐ ĐƯỢC BIỂU
THỊ BẰNG histogram
© 2006Evidence-based Chiropractic 13
Histograms (cont.)
• A histogram is a type of bar chart, but
there are no spaces between the bars
• Histograms are used to visually depict
frequency distributions of continuous data
• Bar charts are used to depict categorical
information
– e.g., Male–Female, Mild–Moderate–Severe,
etc.
© 2006Evidence-based Chiropractic 14
SỐ ĐO KHUYNH HƯỚNG
TRUNG TÂM
• Số trung bình
– The most commonly used DS
• Tính số trung bình
– Add all values of a series of numbers and
then divided by the total number of elements
© 2006Evidence-based Chiropractic 15
Công thức tính số trung bình
• Trung bình mẫu
• Trung bình quần thể
(X bar) refers to the mean of a sample and refers to the
mean of a population
EX is a command that adds all of the X values
n is the total number of values in the series of a sample and
N is the same for a population
X μ
N
X
n
X
X
© 2006Evidence-based Chiropractic 16
Số đo trung tâm
• Mode
– The most frequently
occurring value in a
series
– The modal value is
the highest bar in a
histogram
Mode
© 2006Evidence-based Chiropractic 17
Số đo trung tâm
• Trung vịn
– The value that divides a series of values in
half when they are all listed in order
– When there are an odd number of values
• The median is the middle value
– When there are an even number of values
• Count from each end of the series toward the
middle and then average the 2 middle values
© 2006Evidence-based Chiropractic 18
Số đo trung tâm
• Each of the three methods of measuring
central tendency has certain advantages
and disadvantages
• Which method should be used?
– It depends on the type of data that is being
analyzed
– e.g., categorical, continuous, and the level of
measurement that is involved
© 2006Evidence-based Chiropractic 19
Cấp độ số đo
• There are 4 levels of measurement
– Nominal, ordinal, interval, and ratio
1. Nominal
– Data are coded by a number, name, or letter
that is assigned to a category or group
– Examples
• Gender (e.g., male, female)
• Treatment preference (e.g., manipulation,
mobilization, massage)
© 2006Evidence-based Chiropractic 20
Cấp độ số đo
2. Ordinal
– Is similar to nominal because the
measurements involve categories
– However, the categories are ordered by rank
– Examples
• Pain level (e.g., mild, moderate, severe)
• Military rank (e.g., lieutenant, captain, major,
colonel, general)
© 2006Evidence-based Chiropractic 21
Cấp độ số đo
• Ordinal values only describe order, not
quantity
– Thus, severe pain is not the same as 2 times
mild pain
• The only mathematical operations allowed
for nominal and ordinal data are counting
of categories
– e.g., 25 males and 30 females
© 2006Evidence-based Chiropractic 22
Cấp độ số đo
3. Khoảng
– Measurements are ordered (like ordinal
data)
– Have equal intervals
– Does not have a true zero
– Examples
• The Fahrenheit scale, where 0° does not
correspond to an absence of heat (no true zero)
• In contrast to Kelvin, which does have a true zero
© 2006Evidence-based Chiropractic 23
Cấp độ số đo
4. Ratio
– Measurements have equal intervals
– There is a true zero
– Ratio is the most advanced level of
measurement, which can handle most types
of mathematical operations
© 2006Evidence-based Chiropractic 24
Levels of measurement (cont.)
• Ratio examples
– Range of motion
• No movement corresponds to zero degrees
• The interval between 10 and 20 degrees is the
same as between 40 and 50 degrees
– Lifting capacity
• A person who is unable to lift scores zero
• A person who lifts 30 kg can lift twice as much as
one who lifts 15 kg
© 2006Evidence-based Chiropractic 25
Levels of measurement (cont.)
• NOIR is a mnemonic to help remember
the names and order of the levels of
measurement
– Nominal
Ordinal
Interval
Ratio
© 2006Evidence-based Chiropractic 26
Cấp độ số đo
Measurement scale
Permissible mathematic
operations
Best measure of
central tendency
Nominal Counting Mode
Ordinal
Greater or less than
operations
Median
Interval Addition and subtraction
Symmetrical – Mean
Skewed – Median
Ratio
Addition, subtraction,
multiplication and division
Symmetrical – Mean
Skewed – Median
© 2006Evidence-based Chiropractic 27
Hình dạng bộ dữ liệu
• Histograms of frequency distributions have
shape
• Distributions are often symmetrical with
most scores falling in the middle and fewer
toward the extremes
• Most biological data are symmetrically
distributed and form a normal curve ( bell-
shaped curve)
© 2006Evidence-based Chiropractic 28
Hình dạng bộ dữ liệu
Line depicting
the shape of
the data
© 2006Evidence-based Chiropractic 29
Phân phối bình thường
• The area under a normal curve has a
normal distribution ( Gaussian distribution)
• Properties of a normal distribution
– It is symmetric about its mean
– The highest point is at its mean
© 2006Evidence-based Chiropractic 30
The normal distribution (cont.)
Mean
A normal distribution is symmetric about its mean
As one moves away from
the mean in either direction
the height of the curve
decreases, approaching,
but never reaching zero
The highest point of
the overlying
normal curve is at
the mean
© 2006Evidence-based Chiropractic 31
The normal distribution (cont.)
Mean = Median = Mode
© 2006Evidence-based Chiropractic 32
Phân phối lệch (Skewed
distributions)
• The data are not distributed symmetrically
in skewed distributions
– Consequently, the mean, median, and mode
are not equal and are in different positions
– Scores are clustered at one end of the
distribution
– A small number of extreme values are located
in the limits of the opposite end
© 2006Evidence-based Chiropractic 33
Phân phối lệch
• Skew is always toward the direction of the
longer tail
– Positive if skewed to the right
– Negative if to the left
The mean is shifted
the most
© 2006Evidence-based Chiropractic 34
Phân phối lệch Skewed
distributions
• Because the mean is shifted so much, it is
not the best estimate of the average score
for skewed distributions
• The median is a better estimate of the
center of skewed distributions
– It will be the central point of any distribution
– 50% of the values are above and 50% below
the median
© 2006Evidence-based Chiropractic 35
Những tính chất đường cong
bình thường
• About 68.3% of the area under a normal
curve is within one standard deviation
(SD) of the mean
• About 95.5% is within two SDs
• About 99.7% is within three SDs
© 2006Evidence-based Chiropractic 36
More properties
of normal curves (cont.)
© 2006Evidence-based Chiropractic 37
Độ lệch chuẩn (SD)
• SD is a measure of the variability of a set
of data
• The mean represents the average of a
group of scores, with some of the scores
being above the mean and some below
– This range of scores is referred to as
variability or spread
• Variance (S2) is another measure of
spread
© 2006Evidence-based Chiropractic 38
SD (cont.)
• In effect, SD is the average amount of
spread in a distribution of scores
• The next slide is a group of 10 patients
whose mean age is 40 years
– Some are older than 40 and some younger
© 2006Evidence-based Chiropractic 39
SD (cont.)
Ages are spread
out along an X axis
The amount ages are
spread out is known as
dispersion or spread
© 2006Evidence-based Chiropractic 40
Distances ages deviate above
and below the mean
Adding deviations
always equals zero
Etc.
© 2006Evidence-based Chiropractic 41
Calculating S2
• To find the average, one would normally
total the scores above and below the
mean, add them together, and then divide
by the number of values
• However, the total always equals zero
– Values must first be squared, which cancels
the negative signs
© 2006Evidence-based Chiropractic 42
Calculating S2 cont.
Symbol for SD of a sample
for a population
S2 is not in the
same units (age),
but SD is
© 2006Evidence-based Chiropractic 43
Wide spread results in higher SDs
narrow spread in lower SDs
© 2006Evidence-based Chiropractic 44
Spread is important when
comparing 2 or more group means
It is more difficult to
see a clear distinction
between groups
in the upper example
because the spread is
wider, even though the
means are the same
© 2006Evidence-based Chiropractic 45
z-scores
• The number of SDs that a specific score is
above or below the mean in a distribution
• Raw scores can be converted to z-scores
by subtracting the mean from the raw
score then dividing the difference by the
SD
X
z
© 2006Evidence-based Chiropractic 46
z-scores (cont.)
• Standardization
– The process of converting raw to z-scores
– The resulting distribution of z-scores will
always have a mean of zero, a SD of one,
and an area under the curve equal to one
• The proportion of scores that are higher or
lower than a specific z-score can be
determined by referring to a z-table
© 2006Evidence-based Chiropractic 47
z-scores (cont.)
Refer to a z-table
to find proportion
under the curve
© 2006Evidence-based Chiropractic 48
z-scores (cont.)
Partial z-table (to z = 1.5) showing proportions of the
area under a normal curve for different values of z.
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.94410.9 32
Corresponds to the area
under the curve in black