1.2.1.1. Dãy số
Ta gọi dãy số là một tập hợp các số (gọi là các số hạng) được viết theo một thứ tự, hay
được đánh số bằng các số tự nhiên.
Để cho một dãy số, người ta có thể dùng các cách thức như liệt kê, công thức tổng
quát và công thức truy hồi.
Liệt kê: Viết tất cả các số hạng theo đúng thứ tự (nếu không viết được hết thì dùng
dấu “ ” để biểu thị dãy còn tiếp tục).
Công thức tổng quát: Chỉ rõ cách xác định một số hạng bất kỳ chỉ cần biết thứ tự
của số hạng đó trong dãy.
Công thức truy hồi: Chỉ rõ cách xác định một số hạng khi biết các số hạng liền
trước nó trong dãy.
Liệt kê chỉ có ý nghĩa mô tả và thích hợp nhất với dãy hữu hạn, có thể xem là cách
biểu diễn bằng quy nạp không hoàn toàn. Còn hai cách kia đảm bảo có thể tìm
được số hạng với thứ tự bất kỳ trong dãy.
22 trang |
Chia sẻ: thanhle95 | Lượt xem: 582 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Toán cao cấp - Bài 1: Hàm số, giới hạn và liên tục, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Bài 1: Hàm số, giới hạn và liên tục
MAT101_Bài 1_v2.3013101225 1
Nội dung
Trên cơ sở các kiến thức của chương trình phổ thông, mục đích của bài này là ôn tập, hệ thống
hóa và nâng cao các kiến thức về hàm số một biến số: Giới hạn, tính liên tục của
hàm số.
Hướng dẫn học
Đây là bài học nhằm ôn tập và hệ thống hóa lại các kiến thức toán học đã học trong chương
trình phổ thông nên bạn cần đọc kỹ lại các lý thuyết về hàm số, giới hạn.
Sau khi đọc kỹ lý thuyết bạn cần làm bài tập càng nhiều càng tốt để củng cố và nâng cao
kiến thức.
BÀI 1: HÀM SỐ, GIỚI HẠN VÀ LIÊN TỤC
Thời lượng Mục tiêu
Bạn nên học và làm bài tập của bài này
trong hai tuần, mỗi tuần khoảng 3 đến 4
giờ đồng hồ.
Hiểu được khái niệm hàm số, giới hạn, sự
liên tục
Giải được các bài tập về hàm số, giới hạn,
tính liên tục
Áp dụng phần mềm toán để tính toán với
hàm số, giới hạn
Bài 1: Hàm số, giới hạn và liên tục
2 MAT101_Bài 1_v2.3013101225
1.1. Hàm số một biến số
1.1.1. Định nghĩa hàm số một biến số
Cho X là tập hợp khác rỗng của . Ta gọi ánh xạ
f : X
x y f x
là hàm số một biến số trên tập hợp X , trong đó x là biến số độc lập, y là đại lượng
phụ thuộc hay hàm số của x .
Tập hợp X gọi là miền xác định của hàm số f .
Tập hợp f (X) {y , y f (x) : x X} gọi là miền giá trị của f
Nếu hàm số một biến số cho trong dạng biểu thức: y f (x) mà không nói gì thêm thì
ta hiểu miền xác định của hàm số là tập hợp những giá trị thực của biến số x làm cho
biểu thức có nghĩa.
Ví dụ 1:
Biểu thức 2y 1 x xác định khi :
21 x 0 x 1 1 x 1.
Do đó miền xác định của hàm số 2y 1 x là 1,1 .
Dễ dàng thấy rằng miền giá trị của hàm y là [0,1] .
Miền xác định của một hàm số có thể gồm nhiều tập con rời nhau, trên mỗi tập con đó
lại có một quy tắc riêng để xác định giá trị của hàm số. Hàm số có thể được xác định
bởi nhiều công thức khác nhau tùy thuộc vào giá trị của biến.
Ví dụ 2:
2x 1 khi x 0f (x) 1 2x khi x 0
Hàm f (x) là một hàm số xác định trên . Nếu x không âm thì giá trị của hàm số
được tính theo công thức: 2f (x) x 1 . Nếu x âm, giá trị của hàm số được tính bởi:
f (x) 1 2x.
1.1.2. Đồ thị của hàm số
Giả sử hàm số y = f(x) có miền xác định là X . Ứng với mỗi giá trị 0x X ta có
giá trị 0 0y f (x ) của hàm số. Trong hệ trục tọa độ Đề-các vuông góc, xét điểm
0 0 0M (x , y ) . Khi 0x thay đổi và “quét” hết tập xác định X thì 0M cũng thay đổi
theo và vạch nên một đường cong trong mặt phẳng tọa độ Oxy . Đường cong này được
gọi là đồ thị của hàm số y = f(x).
Như vậy, đồ thị của hàm số y = f(x) là tập hợp những điểm trong mặt phẳng có tọa
độ M x; y , ở đó y = f(x), x thuộc miền xác định X.
Bài 1: Hàm số, giới hạn và liên tục
MAT101_Bài 1_v2.3013101225 3
Ví dụ 3:
Đồ thị của hàm số
2x khi x 0
y x khi 0 x 1
3 khi x 12
được biểu diễn như sau:
Hình 1.1
Việc vẽ phác họa đồ thị của hàm số f với miền xác định là một khoảng số thực
thường được xác định theo trình tự như sau:
Lấy các số 1 2 nx , x ,..., x từ miền xác định
của hàm số (càng nhiều điểm và các điểm
càng gần nhau càng tốt).
Tính các giá trị tương ứng của hàm số
1 1 n ny f (x ),..., y f (x )
Xác định các điểm
1 1 1 n n nM (x , y ),..., M (x , y )
Nối các điểm đã xác định nói trên ta có
hình ảnh phác họa của đồ thị hàm số.
Cách vẽ như trên không hoàn toàn chính xác
mà chỉ cho hình dáng của đồ thị hàm số.
Đồ thị của hàm số được dùng để minh họa
các đặc trưng cơ bản, sự phụ thuộc của giá
trị của hàm số và biến số. Nhìn vào đồ thị có thể dễ dàng quan sát xu hướng thay đổi
của giá trị hàm số khi biến độc lập thay đổi.
1.1.3. Hàm số đơn điệu. Hàm số chẵn, lẻ, tuần hoàn
1.1.3.1. Hàm số đơn điệu
Hàm số f (x) xác định trong khoảng (a,b)
Được gọi là đơn điệu tăng trong khoảng (a, b) nếu với mọi 1 2 1 2x , x (a,b), x x
kéo theo: 1 2f (x ) f (x ) .
CHÚ Ý:
Đồ thị của hàm số có thể là tập hợp các điểm rời rạc, cũng có thể gồm một số cung liền
Hình 1.2
y
x
Bài 1: Hàm số, giới hạn và liên tục
4 MAT101_Bài 1_v2.3013101225
(Nếu điều kiện trên vẫn đúng khi bỏ dấu đẳng thức, tức là:
1 2 1 2 1 2x , x (a, b), x x f (x ) f (x )
thì ta nói hàm f tăng ngặt (hay đồng biến) trên (a, b) ).
Được gọi là đơn điệu giảm trong khoảng (a, b) nếu với mọi 1 2 1 2x , x (a,b), x x
kéo theo: 1 2f (x ) f (x ) .
(Nếu điều kiện trên vẫn đúng khi bỏ dấu đẳng thức:
1 2 1 2 1 2x , x (a, b), x x f (x ) f (x )
thì ta nói hàm f giảm ngặt (hay nghịch biến) trên (a, b) ).
Hàm số f được gọi là đơn điệu trên (a, b) nếu nó chỉ đơn điệu tăng hoặc chỉ đơn
điệu giảm trong khoảng này.
Đồ thị của hàm số tăng là một đường “đi lên”, ngược lại đồ thị hàm số giảm là
đường “đi xuống” nếu nhìn từ trái sang phải.
Hình 1.3
1.1.3.2. Hàm số chẵn, hàm số lẻ
Hàm số f xác định trên một tập hợp D đối xứng x D x D , chẳng hạn khoảng
( l, l) , đoạn a,a , tập ( b, a) (a, b)(0 a b) ,
Được gọi là hàm chẵn nếu: f (x) f ( x) với mọi x D .
Nói một cách đơn giản khi x đổi dấu thì y vẫn không thay đổi.
Được gọi là hàm lẻ nếu: f (x) f ( x) với mọi x D .
Nói một cách đơn giản khi x đổi dấu thì y cũng đổi dấu.
Ví dụ 4:
Các hàm số 2f (x) x , g(x) cos x là các hàm chẵn trên vì:
2 2f ( x) ( x) x f (x) xg( x) cos( x) cos x g(x)
Bài 1: Hàm số, giới hạn và liên tục
MAT101_Bài 1_v2.3013101225 5
còn hàm số 3h(x) x , k(x) sin x là các hàm lẻ trên vì:
3 3h( x) ( x) ( x) h(x) xk( x) sin( x) sin x k(x)
Đồ thị của hàm chẵn nhận trục Oy làm trục đối xứng, còn đồ thị hàm lẻ nhận gốc tọa
độ O làm tâm đối xứng (hình 1.4)
Hàm chẵn:
Hàm lẻ:
1.1.3.3. Hàm số tuần hoàn
Định nghĩa:
Hàm số f được gọi là tuần hoàn trên miền xác định D (thông thường xét D ) nếu
tồn tại số thực p 0 sao cho:
x D thì x p D và f (x p) f (x).
Bài 1: Hàm số, giới hạn và liên tục
6 MAT101_Bài 1_v2.3013101225
Số p gọi là chu kỳ của hàm f .
Nếu trong các số p nói trên, tồn tại một số dương nhỏ nhất – ký hiệu bởi T – thì T
được gọi là chu kỳ cơ bản của f .
Ví dụ 5:
Các hàm sin x,cos x đều tuần hoàn với chu kỳ 2 vì:
sin(x 2 ) sin x,cos(x 2 ) cos x x
Các hàm tgx,cotgx đều tuần hoàn với chu kỳ vì:
tg x tgx, x k ;cotg(x ) cotgx, x k 2
Hơn nữa các chu kỳ nói trên đều là các chu kỳ cơ bản. Thật vậy, chẳng hạn xem xét
hàm y sin x , giả sử tồn tại số dương T 2 để:
sin x T s inx x .
Khi đó với x 0 ta phải có:
sin T sin 0 0 T k (k )
mà T 2 nên T .
Khi đó với x 2
thì sin sin2 2
, hay 1 1 .
Về mặt hình học, đồ thị của hàm tuần hoàn là một họ đường lặp đi lặp lại trong từng
khoảng có độ dài bằng chu kỳ. Do đó để vẽ đồ thị của hàm tuần hoàn, ta chỉ cần vẽ đồ
thị trong một chu kỳ cơ bản T , sau đó thực hiện liên tiếp các phép tịnh tiến theo các
vectơ song song với trục hoành và có độ dài bằng T.
Hình 1.5: Đồ thị hàm số y = tgx
1.1.4. Hàm số hợp
Giả sử ta có hai hàm số
y f (u) biểu diễn sự phụ thuộc của y theo u
u (x) biểu diễn sự phục thuộc của u theo x .
Thêm vào đó, khi x thay đổi trong miền X , các giá trị của hàm số u (x) luôn
thuộc vào miền xác định của hàm y f (u) . Khi đó mỗi giá trị của biến x được cho
tương ứng với duy nhất một giá trị của biến y theo quy tắc:
Bài 1: Hàm số, giới hạn và liên tục
MAT101_Bài 1_v2.3013101225 7
fx u y , hay y f ( (x)) .
Hàm số g biến x thành y theo quy tắc trên gọi là (hàm số) hợp của hai hàm f và .
Ký hiệu: g f ( (x)) . (Nhớ rằng trong cách ký hiệu trên, hàm nào đứng sau lại có tác
động trước đến biến x ).
Ví dụ 6:
Hàm số 5y sin x là hàm hợp của hai hàm 5y u và u sin x .
Cách nói sau cũng được chấp nhận:
“Hàm số 5g(x) sin x là hàm hợp của hai hàm 5f (x) x và (x) sin x ”.
1.1.5. Hàm số ngược
Xét hàm số y f (x) có miền xác định X , miền giá trị Y f (X) . Nếu với mỗi 0y Y
tồn tại duy nhất 0x X để 0 0f (x ) y (hay phương trình 0f (x) y có nghiệm duy
nhất trong X ) thì quy tắc biến mỗi số y Y thành nghiệm duy nhất của phương trình
f (x) y là một hàm số đi từ Y đến X gọi là hàm ngược của hàm f , ký hiệu 1f
1f (y) x f (x) y.
Khi đó, dễ dàng thấy rằng f là hàm ngược của 1f .
Ví dụ 7:
Hàm số 3y x ( ) có hàm ngược là hàm số 3x y ( ) vì:
3 3y x x y
Hàm số xy a a 0,a 1 ( * ) có hàm ngược là hàm số ax log y
( +* ) vì:
x
ay a x log x.
Các hàm lượng giác quen thuộc đều có hàm ngược với cùng một cách ký hiệu:
o Hàm số y sin x , [ 1,1]2 2
có hàm ngược, ta ký hiệu hàm ngược
đó là:
x arcsin y [ 1,1] , .2 2
o Hàm số y cos x 0, [ 1,1] có hàm ngược, ta ký hiệu hàm ngược
đó là:
x arccos y [ 1,1] 0, .
o Hàm số y tgx ,2 2
có hàm ngược, ta ký hiệu hàm ngược đó là:
Bài 1: Hàm số, giới hạn và liên tục
8 MAT101_Bài 1_v2.3013101225
x arctgy , .2 2
o Hàm số y cotgx 0, có hàm ngược, ta ký hiệu hàm ngược đó là:
x arccotgy 0. 0,
1.1.6. Các hàm số sơ cấp
1.1.6.1. Các hàm số sơ cấp cơ bản
Hàm lũy thừa y x ( )
Miền xác định (MXĐ) của hàm phụ thuộc
vào số .
o Nếu 0 , MXĐ là .
o Nếu nguyên âm. MXĐ là \{0} .
o Nếu *1 , pp thì MXĐ là
nếu
p chẵn và nếu p lẻ.
o Nếu vô tỷ, MXĐ được quy ước là .
Hàm mũ: xf (x) a (0 a 1)
MXĐ: , MGT: * ; Hàm số đồng biến nếu a 1 và nghịch biến nếu 0 a 1 .
Hàm số lôgarit: af (x) log x ( 0 a 1 )
o MXĐ: * , MGT: ; Hàm số đồng biến nếu a 1 và nghịch biến nếu
0 a 1 .
Hàm lượng giác
Hình 1.7: Đồ thị hàm số 3y x
CHÚ Ý :
Do thường ký hiệu x để chỉ biến độc lập và y để chỉ biến phụ thuộc nên khi biểu diễn
hàm ngược thay vì 1x f (y) có viết 1y f (x) .
Chẳng hạn ay log x là hàm ngược của hàm: xy a
Đồ thị của hai hàm ngược nhau không
thay đổi như khi đổi vai trò x,y cho nhau
thì nó đối xứng nhau qua đường phân giác
thứ nhất.
Thật vậy, gọi (C) và (C’) lần lượt là đồ thị
của hai hàm f (x) và 1f (x) thì theo
định nghĩa:
M (x, y) (C) M ' (y, x) (C ')
Hình 1.6: Hàm mũ, hàm logarit
Bài 1: Hàm số, giới hạn và liên tục
MAT101_Bài 1_v2.3013101225 9
o y sin x : Có MXĐ là , MGT [ 1,1] ; cho tương ứng mỗi số thực x với
tung độ điểm biểu diễn cung x radian trên đường tròn lượng giác. Hàm sin là
hàm lẻ, tuần hoàn với chu kỳ
cơ bản 2 .
o y cos x : Có MXĐ là ,
MGT [ 1,1] ; cho tương ứng
mỗi số thực x với hoành độ
điểm biểu diễn cung x radian
trên đường tròn lượng giác.
Hàm cos là hàm chẵn, tuần
hoàn với chu kỳ cơ bản 2 .
o y tgx : Có MXĐ là
\ (2k+1) , k2
,
MGT ; cho tương ứng mỗi
số thực x với tung độ của giao
điểm tia OM ( M là điểm biểu diễn cung x radian trên đường tròn lượng giác)
với trục tan là đường thẳng có phương trình: x 1 .
Hàm tgx là hàm lẻ, tuần hoàn với chu kỳ cơ bản .
o y cotgx: Có MXĐ là \ k , k , MGT ; cho tương ứng mỗi số thực x
với hoành độ của giao điểm tia OM ( M là điểm biểu diễn cung x radian trên
đường tròn lượng giác) với trục cotg là đường thẳng có phương trình y 1 .
Hàm cotgx là hàm lẻ, tuần hoàn với chu kỳ cơ bản .
Hình 1.8: Quy tắc xác định các hàm lượng giác
Hình 1.9: Đồ thị các hàm số lượng giác
Bài 1: Hàm số, giới hạn và liên tục
10 MAT101_Bài 1_v2.3013101225
Hàm lượng giác ngược
o y arcsin x : Có MXĐ là [ 1,1] , MGT ,2 2
là hàm ngược của hàm sin.
Hàm y arcsin x là hàm lẻ, đồng biến.
o y arccos x : Có MXĐ là [ 1,1] , MGT 0, là hàm ngược của hàm cos.
o Hàm y arccos x là hàm nghịch biến.
o y arctgx : Có MXĐ là , MGT ,2 2
là hàm ngược của hàm tg.
Hàm y arctgx là hàm lẻ, đồng biến.
o y arccotgx : Có MXĐ là , MGT ,2 2
là hàm ngược của hàm cotgx.
Hàm y arccotgx là hàm lẻ, nghịch biến.
Hình 1.10: Đồ thị các hàm lượng giác ngược
1.1.6.2. Định nghĩa
Hàm số sơ cấp là một hàm số được thành lập từ các hàm số sơ cấp cơ bản và hàm
hằng cùng với một số hữu hạn các phép toán số học (cộng, trừ, nhân chia) và các phép
toán lấy hàm hợp.
Ví dụ 8:
Các hàm số sau đều là các hàm sơ cấp:
Hàm bậc nhất: y ax b .
Bài 1: Hàm số, giới hạn và liên tục
MAT101_Bài 1_v2.3013101225 11
Hàm bậc hai: 2y ax bx c .
Hàm lôgarit: 2alog x x 1 .
Hàm lượng giác: 21 sin xy arctg(2x 3)1 x
.
Hàm phân thức hũu tỷ: 2xy 1 x .
1.2. Dãy số và giới hạn của dãy số
1.2.1. Khái niệm
1.2.1.1. Dãy số
Ta gọi dãy số là một tập hợp các số (gọi là các số hạng) được viết theo một thứ tự, hay
được đánh số bằng các số tự nhiên.
Để cho một dãy số, người ta có thể dùng các cách thức như liệt kê, công thức tổng
quát và công thức truy hồi.
Liệt kê: Viết tất cả các số hạng theo đúng thứ tự (nếu không viết được hết thì dùng
dấu “” để biểu thị dãy còn tiếp tục).
Công thức tổng quát: Chỉ rõ cách xác định một số hạng bất kỳ chỉ cần biết thứ tự
của số hạng đó trong dãy.
Công thức truy hồi: Chỉ rõ cách xác định một số hạng khi biết các số hạng liền
trước nó trong dãy.
Liệt kê chỉ có ý nghĩa mô tả và thích hợp nhất với dãy hữu hạn, có thể xem là cách
biểu diễn bằng quy nạp không hoàn toàn. Còn hai cách kia đảm bảo có thể tìm
được số hạng với thứ tự bất kỳ trong dãy.
Ví dụ 9:
Dãy Fibonacci và 3 cách biểu diễn nêu trên
Liệt kê: 1, 1, 2, 3, 5, 8, 13, 21, 34,
Công thức tổng quát: Số hạng thứ n là:
n n1 5 1 5
2 2
Công thức truy hồi: Hai số hạng đầu tiên đề bằng 1, tiếp đó, số hạng sau được tính
bằng tổng hai số hạng liền trước.
Công thức tổng quát của dãy số là cách biểu diễn tốt nhất để có thể định nghĩa dãy số.
Nhờ nó, dãy số được định nghĩa một cách hết sức đơn giản mà chặt chẽ.
Định nghĩa:
Dãy số là một ánh xạ (hàm số) có miền xác định là (hoặc một tập con các số tự
nhiên liên tiếp của ) và lấy giá trị trong tập các số thực .
Ta thường ký hiệu dãy số bởi n n 1x hay gọn hơn nx .
Bài 1: Hàm số, giới hạn và liên tục
12 MAT101_Bài 1_v2.3013101225
Ví dụ 10:
(A)
n 1
1 1 1 11, , ,..., ,...n 2 3 n
(B) n nn 1( 1) 1,1, 1,..., ( 1) ,...
(C) 2 2n 1n 1, 4,9,..., n ,...
(D)
n 1
n 1 2 3 n, , ,..., ,...n 1 2 3 4 n 1
1.2.1.2. Dãy tăng, dãy giảm, dãy bị chặn
Dãy nx gọi là
Dãy tăng nếu n n 1x x n
Dãy giảm nếu n n 1x x n
Dãy đơn điệu nếu nó là dãy tăng hoặc dãy giảm.
Bị chặn trên nếu tồn tại số M sao cho nx M, n
Bị chặn dưới nếu tồn tại số m sao cho nx m, n
Bị chặn nếu vừa bị chặn trên, vừa bị chặn dưới.
Trong ví dụ 10
Dãy (A) là dãy số giảm, bị chặn dưới bởi 0 và bị chặn trên bởi 1.
Dãy (B) không đơn điệu, bị chặn dưới bởi 1 và bị chặn trên bởi 1.
Dãy (C) là dãy tăng, bị chặn dưới bởi 1 không bị chặn trên nên không bị chặn.
Dãy (D) là dãy tăng, bị chặn dưới bởi 0 và bị chặn trên bởi 1.
1.2.2. Giới hạn của dãy số
Xét dãy số n n 2 n
n 1
1 1 1 1x , ,..., ,...2 2 2 2
. Khoảng cách giữa nx và 0 là:
n n
1x 0 2
Ta thấy: Cho trước một số 0 bé tùy ý thì sẽ tìm được một số N sao cho n > N
thì khoảng cách giữa nx và 0 sẽ bé hơn số đó.
Chẳng hạn, cho trước khoảng 0,05 thì chỉ cần n 8 thì n 1x 0 0,05256 .
Ta nói dãy nx dần tới 0 khi n tiến tới vô cùng.
Định nghĩa:
Dãy nx có giới hạn a hữu hạn khi n tiến tới vô cùng nếu với mọi số 0 cho
trước (bé tùy ý), tồn tại số tự nhiên 0n sao cho với mọi 0n n thì nx a .
Bài 1: Hàm số, giới hạn và liên tục
MAT101_Bài 1_v2.3013101225 13
Ta viết: nnlim x a hay nx a khi n .
Dãy nx được gọi là dãy hội tụ nếu tồn tại số a để nnlim x a . Trong trường hợp
ngược lại, ta nói dãy phân kỳ.
Trong định nghĩa trên, số 0n phụ thuộc vào nên ta viết 0 0n n ( ) .
Ví dụ 11:
n
1lim 0n .
Thật vậy, ta có:
n
1x 0 n .
Với mỗi 0 bất kỳ chỉ cần chọn 0 1n 1 thì khi 0n n có ngay
n
1 1x 0 1n
.
Định nghĩa:
Dãy nx được nói là có giới hạn khi n tiến tới vô cùng nếu với mọi số M 0
cho trước (lớn tùy ý), tồn tại số tự nhiên 0n sao cho với mọi 0n n thì nx M ; ta
cũng viết nnlim x và là dãy phân kỳ.
Trên đây chỉ phát biểu định nghĩa giới hạn vô cùng nói chung, ta có thể phát biểu chi
tiết hơn về giới hạn , .
1.2.3. Tiêu chuẩn tồn tại giới hạn
1.2.3.1. Tính duy nhất của giới hạn
Định lý:
Nếu một dãy có giới hạn (hữu hạn) thì
Dãy đó là dãy bị chặn .
Giới hạn là duy nhất.
1.2.3.2. Nguyên lý giới hạn kẹp
Nếu có ba dãy số n n nx , y , z thỏa mãn:
n n nx y z
n nn nlim x lim z a ( a có thể hữu hạn, hoặc ) thì ny có giới hạn và
nn
lim y a
.
1.2.3.3. Định lý Weierstrass
Dãy số tăng và bị chặn trên (hoặc giảm và bị chặn dưới) thì hội tụ.
Bài 1: Hàm số, giới hạn và liên tục
14 MAT101_Bài 1_v2.3013101225
1.2.4. Các định lý về giới hạn của dãy số
Cho n nx , y là các dãy có giới hạn hữu hạn. Dùng định nghĩa có thể chứng minh
các kết quả sau:
n n n nn n nlim(x y ) lim x lim y
n n n nn n nlim(x y ) lim x lim y
nnn nn nn nn
lim xxlim (khi lim y 0)y lim y
.
Chú ý rằng khi cả n nx , y có các giới hạn vô cực thì nhìn chung không sử dụng
được các kết quả nói trên. Các dạng vô định thường gặp là 0 , , ,0.0
. Khi đó ta
phải dùng các phép biến đổi để khử dạng vô định.
Ví dụ 12:
2 2
2n n
2
1 21n n 2 1n n: lim lim .12n 1 22 n
2 2n n n
2
233n 2 3n( ) : lim n 3n 2 n lim lim .23 2n 3n 2 n 1 1n n
1.3. Giới hạn và sự liên tục của hàm số
1.3.1. Định nghĩa
1.3.1.1. Định nghĩa (giới hạn hàm số)
Giả sử hàm số f (x) xác định ở lân cận điểm 0x (có thể trừ tại 0x ). Ta nói hàm số
f (x) có giới hạn là A khi x dần tới 0x nếu:
Với mọi số 0 cho trước, đều tồn tại một số 0 sao cho khi:
0x x thì f (x) A .
Kí hiệu là:
0x x
lim f (x) A hay f (x) A khi x a .
Một cách tương đương ta có thể định nghĩa f x có giới hạn là A khi 0x x khi và
chỉ khi với mọi n 0x x ta có nf x A .
1.3.1.2. Định nghĩa (giới hạn một phía)
Trong định nghĩa nêu trên, chúng ta xét quá trình 0x x không phân biệt 0x x hay
0x x . Khi xem xét giới hạn, nhiều khi ta phải xét riêng hai quá trình này với kí hiệu
như sau:
Bài 1: Hàm số, giới hạn và liên tục
MAT101_Bài 1_v2.3013101225 15
Quá trình x tiến đến 0x về phía bên phải, tức là 0x x với điều kiện 0x x ,
được kí hiệu là: 0x x 0 hoặc đơn giản hơn là 0x x
Quá trình x tiến đến 0x về phía bên trái, tức là 0x x với điều kiện 0x x ,
được kí hiệu là: 0x x 0 hoặc đơn giản hơn là 0x x
Giới hạn của hàm số f (x) khi 0x x hoặc khi 0x x được gọi tương ứng
là giới hạn bên phải và giới hạn bên trái của hàm số tại điểm 0x .
Giới hạn bên phải:
0 0 0x x x x ,x x
lim f (x) lim f (x) .
Giới hạn bên trái:
0 0 0x x x x ,x x
lim f (x) lim f (x) .
Từ định nghĩa trên ta suy ra:
Định lý:
Điều kiện cần và đủ để
0x x
lim f (x) L là: 0 0x x x xlim f (x) lim f (x) L .
1.3.2. Tính chất
1.3.2.1. Tính chất các hàm có giới hạn
Giới hạn của hàm số cũng có một số tính chất tương tự như giới hạn của dãy số
Định lý:
Nếu hàm số f (x) có giới hạn khi x a thì giới hạn đó là duy nhất.
Định lý:
Nếu hàm số f (x) có giới hạn hữu