6.1.1. Khái niệm về hệ siêu tĩnh
Hệ siêu tĩnh là hệ mà ta không thể xác định tất cả các phản
lực và nội lực trong hệ nếu chỉ dùng các phương trình cân
bằng tĩnh học.
Hệ siêu tĩnh là hệ bất biến hình thừa liên kết
(phần đầu thừa BC là tĩnh định – dùng các pt cân bằng tĩnh
học xác định nội lực. Phần AB là siêu tĩnh vì ba pt cân bằng
không đủ để xác định 4 phản lực)
22 trang |
Chia sẻ: hoang10 | Lượt xem: 670 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Cơ học công trình xây dựng - Chương 6: Tính hệ siêu tĩnh bằng phƣơng pháp lực, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
www.nuce.edu.vn
1National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
CƠ HỌC
CÔNG TRÌNH
XÂY DỰNG
Trần Minh Tú
Bộ môn Sức bền Vật liệu
Khoa Xây dựng DD & CN
Trƣờng Đại học Xây dựng
www.nuce.edu.vn
2National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
Chƣơng 6
TÍNH HỆ SIÊU TĨNH
BẰNG PHƢƠNG PHÁP LỰC
www.nuce.edu.vn
3National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
Chương 6. Tính hệ siêu tĩnh bằng phương pháp lực
NỘI DUNG
6.1. Các khái niệm
6.2. Tính hệ siêu tĩnh bằng phƣơng pháp lực
www.nuce.edu.vn
4National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
6.1. Các khái niệm
6.1.1. Khái niệm về hệ siêu tĩnh
Hệ siêu tĩnh là hệ mà ta không thể xác định tất cả các phản
lực và nội lực trong hệ nếu chỉ dùng các phương trình cân
bằng tĩnh học.
Hệ siêu tĩnh là hệ bất biến hình thừa liên kết
(phần đầu thừa BC là tĩnh định – dùng các pt cân bằng tĩnh
học xác định nội lực. Phần AB là siêu tĩnh vì ba pt cân bằng
không đủ để xác định 4 phản lực)
www.nuce.edu.vn
5National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
6.1.2. Tính chất của hệ siêu tĩnh
– Chuyển vị, biến dạng và nội lực trong hệ siêu tĩnh nói chung
nhỏ hơn trong hệ tĩnh định có cùng kích thước và tải trọng
tác dụng => dùng hệ siêu tĩnh tiết kiệm vật liệu hơn
6.1. Các khái niệm
www.nuce.edu.vn
6National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
– Trong hệ siêu tĩnh nội lực có thể xuất hiện do các nguyên
nhân: biến thiên nhiệt độ, sự chuyển vị cưỡng bức của
các gối tựa, chế tạo hay lắp ráp không chính xác
> Nguyên nhân biến thiên nhiệt độ
6.1. Các khái niệm
www.nuce.edu.vn
7National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
> Nguyên nhân chuyển vị cưỡng bức của các gối tựa
6.1. Các khái niệm
www.nuce.edu.vn
8National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
> Nguyên nhân do chế tạo, lắp ráp không chính xác
– Nội lực trong hệ siêu tĩnh phụ thuộc vào độ cứng
của các cấu kiện trong hệ (EA, GIp, EI)
Dầm tĩnh định AB nếp lắp ráp
thêm thanh CD sẽ trở thành hệ
siêu tĩnh, nếu thanh CD chế tạo
hụt một đoạn D, khi ráp vào =>
xuất hiện nội lực
6.1. Các khái niệm
www.nuce.edu.vn
9National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
6.1.3. Bậc siêu tĩnh: là số liên kết thanh thừa trong hệ ngoài
số liên kết cần để hệ bất biến hình
• Cách xác định bậc siêu tĩnh
6.1. Các khái niệm
www.nuce.edu.vn
10National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
6.2. Tính hệ siêu tĩnh bằng phương pháp lực
• Nội dung của pp lực là giải hệ siêu tĩnh thông qua một hệ
khác – gọi là hệ cơ bản
6.2.1. Hệ cơ bản
• Là hệ bất biến hình được suy ra từ hệ siêu tĩnh đã cho
bằng cách loại bỏ đi tất cả hoặc một số liên kết thừa
• Nếu loại bỏ tất cả các liên kết thừa – hệ cơ bản là hệ tĩnh
định. Có nhiều cách loại bỏ các liên kết thừa, yêu cầu hệ
cơ bản phải là hệ bất biến hình và dễ xác định nội lực
www.nuce.edu.vn
11National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
6.2. Tính hệ siêu tĩnh bằng phương pháp lực
• Khi tính hệ siêu tĩnh ta không tính trực tiếp trên hệ đó mà
tính trên hệ cơ bản của nó. Để hệ cơ bản làm việc giống
hệ siêu tĩnh ban đầu cần bổ sung thêm một số điều kiện.
• So sánh hệ siêu tĩnh và hệ cơ bản
www.nuce.edu.vn
12National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
6.2. Tính hệ siêu tĩnh bằng phương pháp lực
• Điều kiện để hệ cơ bản tƣơng đƣơng với hệ thực là chuyển vị
tại các vị trí của liên kết thừa Xk bị loại bỏ phải bằng không: Dk=0
• Để cho hệ cơ bản làm việc giống hệ siêu tĩnh, cần:
- Thiết lập điều kiện chuyển vị theo
phương các liên kết bọ loại bỏ trên hệ cơ
bản do các
- Trên hệ cơ bản, tại D đặt các lực X1, X2, X3 theo phương các liên
kết bị loại trừ. Các lực này chưa biết và đóng vai trò là ẩn số.
- Thiết lập điều kiện chuyển vị tại D do
(X1, X2, X3 và P) gây ra bằng không.
www.nuce.edu.vn
13National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
6.2. Tính hệ siêu tĩnh bằng phương pháp lực
6.2.2. Hệ phƣơng trình chính tắc
• Nếu hệ có n liên kết bị loại trừ thì có n điều kiện chuyển vị:
1 1 2( , ,..., , ) 0nX X X PD
2 1 2( , ,..., , ) 0nX X X PD
......................................
1 2( , ,..., , ) 0n nX X X PD
Hệ pt cơ bản của pp lực
Kí hiệu Dkm – chuyển vị tại điểm đặt lực Xk theo phương lực Xk và do
lực Xm gây nên.
với dkm là chuyển vị của điểm đặt lực Xk theo phương của lực Xk do
lực Xm=1đ.v gây nên
11 1 12 2 1 1... 0n n PX X Xd d d D
21 1 22 2 2 2... 0n n PX X Xd d d D
1 1 2 2 ... 0n n nn n nPX X Xd d d D
...................................... Hệ pt chính tắc:
Đã có: Dkm= dkm. Xm
www.nuce.edu.vn
14National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
6.2. Tính hệ siêu tĩnh bằng phương pháp lực
Nếu k ≠ m => dkm – hệ số phụ (dkm = dmk)
Nếu k = m => dkk – hệ số chính
DkP – chuyển vị tại điểm đặt lực Xk theo phương lực Xk, do tải trọng
P trên hệ gây nên
DkP – số hạng tự do
6.2.3. Cách tính các hệ số dkm và số hạng tự do DkP(dầm và khung)
• Trên hệ cơ bản đặt riêng lực Xk = 1, vẽ biểu đồ
• Trên hệ cơ bản đặt riêng lực Xm = 1, vẽ biểu đồ
• Tiến hành nhân biểu đồ
• Cách tính số hạng tự do DkP – trên hệ cơ bản đặt riêng tải trọng và vẽ
biểu đồ => nhân biểu đồ
( ) ( )k m
km
M M
EI
d
kM
mM
( ) ( )k k
kk
M M
EI
d
0
PM 0( ) ( )k P
kP
M M
EI
D
www.nuce.edu.vn
15National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
6.2. Tính hệ siêu tĩnh bằng phương pháp lực
6.2.4. Biểu đồ nội lực
• Sau khi tính được các hệ số dkm, dkk và DkP, giải hệ pt chính tắc để
tìm các ẩn số là phản lực liên kết thừa Xk.
• Đặt tải trọng và các ẩn lực thừa Xk lên hệ cơ bản ta sẽ tính và vẽ
được biểu đồ nội lực
• Đơn giản: Phƣơng pháp cộng tác dụng.
1 2, ,... nM M M
1 21, 1,..., 1,nX X X
0
PM
- Trong quá trình tính toán ta đã vẽ các biểu đồ do các
lực đơn vị và biểu đồ do tải trọng gây ra trên
hệ cơ bản
- Biểu đồ cho hệ siêu tĩnh MP với tung độ được tính như sau:
www.nuce.edu.vn
16National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
Ví dụ 6.1
1. Xác định bậc siêu tĩnh
2. Chọn hệ cơ bản
- Thay tác dụng của liên kết bị loại bỏ bằng
ẩn lực thừa
X1
n = 3V – K = 3.1-2=1
3. Phương trình chính tắc của khung
4. Tính các hệ số d11, D1P
C
6
m
4m
q=5kN/m
D
B
EI
3EI
Vẽ biểu đồ nội lực cho khung chịu lực như h.vẽ
11 1 1 0PXd D
www.nuce.edu.vn
17National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
- Vẽ biểu đồ : trên hệ cơ bản đặt X1 = 1
=> vẽ biểu đồ
1M
1M X14
4
1M
- Vẽ 0PM
90
kNm
0
PM
1 1
11
( ) ( )
i
i
M M
EI
d
1 1 2 1 160
4 4 4 4 6 4
2 3 3 3EI EI EI
0
1 1
1
( ) ( )i
P
i
M M
EI
D
1 1 240
90 6 4
3 3EI EI
- Thay giá trị các hệ số vào pt chính tắc, nhận được
1
160 240
0
3
X
EI EI
1 4,5( )X kN
5. Vẽ biểu đồ nội lực cho khung siêu tĩnh
Ví dụ 6.1
www.nuce.edu.vn
18National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
- Tính tung độ biểu đồ MP tại các điểm đặc biêt
0
1 1 90 4 4,5 72B PM M M X kNm
0
1 1 0 4 4,5 18C PM M M X kNm
0DM
kNm
PM
B
C D
72
18
18
- Biểu đồ lực cắt QP
B
C D
5 6 30BQ qL kN 0C B qQ Q S
1 4,5C DQ Q X kN
kN
PQ
B
C D
+
4,5
kN
PN
+
30
-
4,5
- Biểu đồ lực dọc NP
Ví dụ 6.1
www.nuce.edu.vn
19National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
Ví dụ 6.2
q
X1
C
D
L
Vẽ biểu đồ nội lực cho dầm có liên kết và
chịu tải trọng như hình vẽ
- Chọn hệ cơ bản, thay các liên kết thừa
bằng phản lực liên kết như hình vẽ
D
- Phương trình chính tắc của dầm
- Tính các hệ số d11, D1P
11 1 1 0PXd D
- Vẽ biểu đồ : trên hệ cơ bản đặt X1 = 1
=> vẽ biểu đồ
1M
1M
- Vẽ
0
PM
X1=1
1M
L
qL2/2
0
PM
1 1
11
( ) ( )
i
i
M M
EI
d
21 2
2 3 3
L L
L
EI EI
www.nuce.edu.vn
20National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
Ví dụ 6.2
0
1 1
1
( ) ( )i
q
i
M M
EI
D
2 31 1 3
3 2 4 8
qL qL
L
EI EI
- Phương trình chính tắc
2 3
1 0
3 8
L qL
X
EI EI
1
3
8
qL
X
- Biểu đồ nội lực
www.nuce.edu.vn
21National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com
Câu hỏi ???
www.nuce.edu.vn
22National University of Civil Engineering Tran Minh Tu
tpnt2002@yahoo.com