Trong giải tích, bài toán tìm điểm cực trị của hàm số có rất nhiều ứng 
dụng quan trọng. Một kết quả cổ điển chỉ ra rằng hàm 
f
nửa liên tục dưới 
trên tập compact 
X
thì sẽ đạt cực tiểu trên tập đó. Khi tập 
X
không compact 
thì hàm
f
có thể  không có điểm cực trị. Tuy vậy, với không gian mêtric đủ 
X
, hàm 
f
bị chặn dưới ta vẫn có thông tin về điểm xấp xỉ cực tiểu. Cụ thể là 
khi hàm 
f
bị chặn dưới ta luôn tìm được điểm 
- xấp xỉ cực tiểu 
x
, tức là 
inf ( ) inf
XX f f x f
    
. 
Hơn nữa, vào năm 1974, I.Ekeland đã phát  biểu nguyên lí nói rằng với hàm 
f
nửa liên tục  dưới,  bị chặn dưới trên không gian mêtric đủ 
X
thì với mọi điểm
-  xấp xỉ cực tiểu 
x
, ta luôn tìm được điểm 
x
là cực tiểu chặt của hàm nhiễu 
của hàm ban đầu, đồng thời 
() fx 
() fx
. Không những thế,  còn đánh giá 
được khoảng cách giữa 
x
và 
x
.
Từ khi ra đời, nguyên lí biến phân Ekeland đã trở thành công cụ mạnh 
trong giải tích hiện đại. Những ứng dụng của nguyên lí này bao trùm nhiều 
lĩnh vực như: Lí thuyết tối ưu, giải tích không trơn, lí thuyết điều khiển, lí 
thuyết điểm bất động, kinh tế, . . . 
Trong những năm gần đây, nguyên lí này đã được mở rộng cho trường 
hợp hàm 
f
là ánh xạ đơn trị hoặc đa trị nhận giá trị trong không gian véc tơ.
Mục đích của Luận văn là tìm hiểu một  số kết quả liên quan đến nguyên 
lí biến phân Ekeland (cổ điển và véc tơ) cùng một số ứng dụng của nguyên lí 
này, được giới thiệu trong các bài báo [2,5].
Luận văn gồm 2 chương:
Chương 1  gồm nguyên lí biến phân Ekeland cổ điển [2], dạng hình học của 
nguyên  lí (định lí Bishop  -Phelps, định lí giọt nước, định lí cánh hoa), một số
ứng dụng của nguyên lí (định lí điểm bất động Banach, định lí điểm bất động 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên    http://www.lrc-tnu.edu.vn
Caristi-Kirk,đạo hàm Gateaux).
                
              
                                            
                                
            
                       
            
                 42 trang
42 trang | 
Chia sẻ: ttlbattu | Lượt xem: 2254 | Lượt tải: 3 
              
            Bạn đang xem trước 20 trang tài liệu Đề tài Nguyên lí biến phân ekeland và một số ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
ĐẠI HỌC THÁI NGUYÊN 
TRƢỜNG ĐẠI HỌC SƢ PHẠM 
NGUYỄN XUÂN HÒA 
NGUYÊN LÍ BIẾN PHÂN EKELAND 
VÀ MỘT SỐ ỨNG DỤNG 
LUẬN VĂN THẠC SĨ TOÁN HỌC 
Thái Nguyên - năm 2009 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
ĐẠI HỌC THÁI NGUYÊN 
TRƢỜNG ĐẠI HỌC SƢ PHẠM 
NGUYỄN XUÂN HOÀ 
NGUYÊN LÍ BIẾN PHÂN EKELAND 
VÀ MỘT SỐ ỨNG DỤNG 
Chuyên ngành: Giải tích 
Mã số: 60.46.01 
LUẬN VĂN THẠC SĨ TOÁN HỌC 
Ngƣời hƣớng dẫn khoa học: 
PGS.TS. TRƢƠNG XUÂN ĐỨC HÀ 
Thái Nguyên - năm 2009 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
Mục lục 
Trang 
Lời nói đầu 
Chƣơng 1. Nguyên lí biến phân Ekeland cổ điển 1 
 1.1. Một số kiến thức chuẩn bị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 
 1.2. Nguyên lí biến phân Ekeland cổ điển . . . . . . . . . . . . . . . . . . . . . . . . 4 
 1.2.1. Nguyên lí biến phân Ekeland cổ điển . . . . . . . . . . . . . . . . . . . . .4 
 1.2.2. Nguyên lí biến phân Ekeland trong không gian hữu hạn chiều . 9 
 1.3. Dạng hình học của nguyên lí biến phân Ekeland . . . . . . . . . . . . . . 11 
 1.3.1. Định lí Bishop-Phelps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
 1.3.2. Định lí cánh hoa (Định lí Flower-Pental) . . . . . . . . . . . . . . . . .12 
 1.3.3. Định lí giọt nước (Định lí Drop) . . . . . . . . . . . . . . . . . . . . . . . 13 
 1.4. Một số ứng dụng của nguyên lí .. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
 1.4.1. Nguyên lí biến phân Ekeland và tính đầy đủ . . . . . . . . . . . . . .16 
 1.4.2. Các định lí điểm bất động . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
 1.4.3. Đạo hàm tại điểm xấp xỉ cực tiểu . . . . . . . . . . . . . . . . . . . . . . 22 
Chƣơng 2. Nguyên lí biến phân Ekeland véc tơ 25 
 2.1. Một số kiến thức chuẩn bị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 
 2.2. Nguyên lí biến phân Ekeland véc tơ . . . . . . . . . . . . . . . . . . . . . . . .28 
 2.3. Định lí điểm bất động Caristi véc tơ . . . . . . . . . . . . . . . . . . . . . . .. 30 
 2.4. Định lí Takahashi véc tơ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 
2.5. Một vài ví dụ minh hoạ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 
 2.6. Sự tương đương giữa các định lí . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
LỜI NÓI ĐẦU 
 Trong giải tích, bài toán tìm điểm cực trị của hàm số có rất nhiều ứng 
dụng quan trọng. Một kết quả cổ điển chỉ ra rằng hàm 
f
 nửa liên tục dưới 
trên tập compact 
X
 thì sẽ đạt cực tiểu trên tập đó. Khi tập 
X
 không compact 
thì hàm 
f
 có thể không có điểm cực trị. Tuy vậy, với không gian mêtric đủ 
X
, hàm 
f
 bị chặn dưới ta vẫn có thông tin về điểm xấp xỉ cực tiểu. Cụ thể là 
khi hàm 
f
 bị chặn dưới ta luôn tìm được điểm 
- xấp xỉ cực tiểu 
x
, tức là 
inf ( ) infX Xf f x f   
. 
Hơn nữa, vào năm 1974, I.Ekeland đã phát biểu nguyên lí nói rằng với hàm 
f
nửa liên tục dưới, bị chặn dưới trên không gian mêtric đủ 
X
 thì với mọi điểm 
- xấp xỉ cực tiểu 
x
, ta luôn tìm được điểm 
x
 là cực tiểu chặt của hàm nhiễu 
của hàm ban đầu, đồng thời 
( )f x
( )f x
. Không những thế, còn đánh giá 
được khoảng cách giữa 
x
 và 
x
. 
 Từ khi ra đời, nguyên lí biến phân Ekeland đã trở thành công cụ mạnh 
trong giải tích hiện đại. Những ứng dụng của nguyên lí này bao trùm nhiều 
lĩnh vực như: Lí thuyết tối ưu, giải tích không trơn, lí thuyết điều khiển, lí 
thuyết điểm bất động, kinh tế, . . . 
 Trong những năm gần đây, nguyên lí này đã được mở rộng cho trường 
hợp hàm 
f
 là ánh xạ đơn trị hoặc đa trị nhận giá trị trong không gian véc tơ. 
 Mục đích của Luận văn là tìm hiểu một số kết quả liên quan đến nguyên 
lí biến phân Ekeland (cổ điển và véc tơ) cùng một số ứng dụng của nguyên lí 
này, được giới thiệu trong các bài báo [2,5]. 
Luận văn gồm 2 chương: 
Chương 1 gồm nguyên lí biến phân Ekeland cổ điển [2], dạng hình học của 
nguyên lí (định lí Bishop -Phelps, định lí giọt nước, định lí cánh hoa), một số 
ứng dụng của nguyên lí (định lí điểm bất động Banach, định lí điểm bất động 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
Caristi-Kirk,đạo hàm Gateaux). 
Đây là các kết quả được giới thiệu trong bài báo của I.Ekeland [2] 
năm1974 và các bài báo của các tác giả khác [1,4]. Trong chương này chúng tôi 
cũng trình bày một cách chứng minh ngắn gọn nguyên lí biến phân Ekeland 
trong không gian hữu hạn chiều (sử dụng điều kiện bức), cách chứng minh này 
được giới thiệu trong bài giảng về lí thuyết tối ưu của Giáo sư Hoàng Tuỵ - Viện 
Toán học. 
Chương 2 gồm nguyên lí biến phân Ekeland mở rộng cho ánh xạ nhận giá trị 
véc tơ, định lí Caristi - Kirk véc tơ, định lí Takahashi véc tơ, một số ví dụ 
minh hoạ và sự tương đương của ba định lí này. Đây là kết quả mới nhận 
được, được đăng trong bài báo của Y.Araya [5] năm 2008. 
Nhân dịp này, Em xin được bày tỏ lòng biết ơn sâu sắc đến 
PGS.TS. Trƣơng Xuân Đức Hà - cán bộ Viện Toán học - Viện Khoa học và 
Công nghệ quốc gia. Luận văn này sẽ không thể hoàn thành nếu không có sự 
chỉ bảo, hướng dẫn, sự giúp đỡ tận tình của cô. 
 Em xin chân thành cảm ơn các thầy cô trong hội đồng phản biện, các 
thầy cô trong khoa Toán và khoa Sau đại học - ĐHSP Thái Nguyên, đã giúp 
đỡ em hoàn thiện luận văn này. 
 Xin cảm ơn Ban giám hiệu và các đồng nghiệp trường THPT Phú Bình đã 
luôn tạo điều kiện thuận lợi cho tôi trong quá trình học tập và hoàn thành luận 
văn. 
 Xin cảm ơn gia đình và các bạn Phạm Hùng Linh, Vũ Quang Huy, 
Nguyễn Hữu Toàn, Hoàng Hữu Quý, Phạm Hồng Nam, đã luôn quan tâm, 
động viên, giúp đỡ tôi trong quá trình hoàn thành luận văn. 
Thái Nguyên, ngày 28 tháng 09 năm 2009 
 Học viên 
 Nguyễn Xuân Hoà 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
Chƣơng 1 NGUYÊN LÍ BIẾN PHÂN EKELAND CỔ ĐIỂN 
Trong chương này, chúng ta xem xét nguyên lí biến phân Ekeland cổ điển, 
dạng hình học của nguyên lí và một số ứng dụng của nguyên lí này. 
1.1. Một số kiến thức chuẩn bị 
Trong mục này, chúng ta xét lớp hàm nửa liên tục dưới và một số tính chất 
của hàm này. 
Cho 
X
 là không gian tôpô và hàm 
 :f X   
Kí hiệu: 
  domf x X f x   
. 
 ( )aL f x X f x a  
 là tập mức của 
f
. 
    ,epif x a X f x a   
 là tập trên đồ thị của 
f
. 
Định nghĩa 1.1 
Cho 
X
 là không gian tôpô. Hàm 
 :f X   
 được gọi là hàm nửa liên 
tục dưới tại 
0x
 khi và chỉ khi 
 
0
liminf
x x
f x
0( )f x
. 
Hàm 
f
 được gọi là nửa liên tục dưới trên 
X
 nếu 
f
 nửa liên tục dưới tại mọi 
điểm của 
X
 . 
Nhận xét 1.1 
Hàm 
f
 là nửa liên tục dưới tại 
0x
 khi và chỉ khi 
0 
 tồn tại lân cận 
U
của 
0x
 sao cho 
x U 
 ta đều có 
   0f x f x  
. 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
Ví dụ 1.1 
 Hàm số 
:f   
 cho bởi: 
  
23 2
0
x
f x
 
 
 nếu 
2x 
Ta thấy: 
domf  
. 
   1 ( ) 1 1,1L f x f x    
 là tập mức của hàm
f
. 
    ,epif x a f x a    
là phần mặt phẳng nằm trên parabol có 
 phương trình 
2( ) 3 2f x x 
 hợp với đoạn thẳng AB trong đó 
 A
 2,0
, B
 2,10
 là tập trên đồ thị của 
f
. 
Dễ thấy rằng 
f
 là hàm liên tục trên 
 \ 2
, gián đoạn tại 
2x 
. Nhưng 
f
 là 
hàm nửa liên tục dưới tại 
2x 
 vì 
 
2
liminf 10
x
f x
(2)f
. Do đó 
f
 là hàm nửa 
liên tục dưới trên 
. 
Mệnh đề 1.1. 
Cho 
X
là không gian mêtric và hàm 
 :f X   
, khi đó các khẳng định 
sau là tương đương: 
 (a) 
f
 là hàm nửa liên tục dưới trên
X
. 
 (b) 
    ,epif x a X f x a   
 là tập đóng trong 
X 
. 
 (c) 
 ( )aL f x X f x a  
 là tập đóng trong 
X
 (
a 
). 
Chứng minh 
(a)
(b).Giả sử 
f
 là hàm nửa liên tục dưới trên 
X
. Ta lấy dãy 
{( , )}n nx a epif
Sao cho 
lim( , )n n
n
x a
 0 0
( , )x a
. Ta cần chỉ ra 
0 0( , )x a epif
. Thật vậy, 
0 0lim , limn n
n n
x x a a
 
 
 và hàm 
f
 là nửa liên tục dưới tại 
0x
 nên 
 nếu x ≠2 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
 liminf n
n
f x
0( )f x
, mà dãy 
{( , )}n nx a epif
 nên 
( )n nf x a
(
n 
), nên 
 liminf n
n
f x
lim n
n
a
. Do đó 
0( )f x
 liminf n
n
f x
lim n
n
a
0a
. 
Điều này chứng tỏ 
0 0( , )x a epif
. 
(b)
(c). Giả sử epi 
f
 là tập đóng trong 
X 
. Ta sẽ chứng minh mọi tập 
mức của 
f
 đều đóng trong 
X
. Thật vậy, giả sử 
 ( )aL f x X f x a  
 là tập 
mức bất kỳ của 
f
 . Lấy dãy{
nx
}
aL f
 sao cho 
0lim n
n
x x
 do dãy {
nx
}
aL f
Nên
( )nf x
a
 hay (
nx
,
a
)
epif
(
n 
). Hơn nữa, 
0lim n
n
x x
nên 
, 0lim( ) ( , )n
n
x a x a
. Mà 
epif
 là tập đóng trong 
X 
 nên (
0x
,
a
)
epif
, do đó 
0x  aL f
 ta có điều phải chứng minh. 
(c)
(a). Giả sử mọi tập mức của 
f
 đều đóng trong 
X
 . Ta cần chứng 
minh
f
 là hàm nửa liên tục dưới trên 
f
. Giả sử phản chứng 
f
 không là nửa 
liên tục dưới tại 
0x X
. Khi đó có dãy{
nx
}
X
 sao cho 
0lim n
n
x x
, 
 liminf n
n
f x
0( )f x
. Chọn 
0 
 đủ nhỏ sao cho có 
k
để
( )nf x 0( )f x  
(
n k 
). Xét tập mức 
 0)( ) (L x X f x f x    
 ta thấy 
nx 
L
,
n k 
. Mặt khác do 
L
 đóng và 
0lim n
n
x x
 nên 
0x 
L
, do đó 
0( )f x 0( )f x  
 (vô lí). Vậy 
f
 là nửa liên tục dưới trên 
X
. 
Định nghĩa 1.2 
Cho tập 
S
 trong không gian mêtric 
( , )X d
. Hàm chỉ của tập 
S
 là hàm: 
  
0
Sl x
 
x S
x S 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
Ta có kết quả sau: 
Mệnh đề 1.2. 
Nếu 
S
 là tập đóng thì 
Sl
 là hàm nửa liên tục dưới. 
Chứng minh 
Khi 
0x S
, từ định nghĩa hàm 
Sl
 ta có 
0 
 tồn tại lân cận 
U
của 
0x
 mà 
0( ) ( ) ,S Sl x l x x U   
. Khi 
0x S
, vì 
S
 là tập đóng nên 
0( , ) 0d x S 
. Chọn 
0
0
( , )
, ( , )
2
d x S
r x B x r  
 thì 
x S
. Do đó 
0 0( ) ( ) , ( , )S Sl x l x x B x r   
. Ta có điều 
phải chứng minh. 
 1.2. Nguyên lí biến phân Ekeland cổ điển 
Trong mục này, chúng ta xem xét nguyên lí biến phân Ekeland cổ điển và 
xem xét nguyên lí này trong không gian hữu hạn chiều. 
1.2.1. Nguyên lí biến phân Ekeland 
Vấn đề chúng ta thường quan tâm là khi nào hàm 
 :f X   
 đạt cực 
tiểu trên 
X
, tức là 
x X 
sao cho 
( ) ( ),f x f x x X  
. Trước hết, ta nhìn lại kết 
quả quen thuộc về sự tồn tại điểm cực tiểu của hàm 
f
 nửa liên tục dưới trên 
tập compact. 
Mệnh đề 1.3. 
Cho hàm 
 :f X   
 là hàm nửa liên tục dưới trên tập 
X
 compact. Khi 
đó 
f
 đạt cực tiểu trên 
X
. 
Chứng minh 
Đặt 
 inf ( )a f x x X 
. Khi đó có một dãy {
nx
}
X
 sao cho 
lim ( )n
n
f x a
. Do 
X
 compact, để không mất tính tổng quát ta có thể coi {
nx
} là dãy hội tụ đến 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
x X
. Ta sẽ chứng minh 
( )f x a
. Thật vậy, do 
f
 là nửa liên tục dưới tại 
x
nên 
 liminf ( )n
n
f x f x
. Kết hợp với 
lim ( )n
n
f x a
 ta suy ra 
( )f x a
( điều đó 
chứng tỏ 
a  
). Mặt khác theo định nghĩa của 
a
 ta có 
( )f x a
. Vậy 
( )f x a
và 
x
 là điểm cực tiểu của hàm 
f
 trên 
X
.
Khi X không compact thì hàm f có thể không đạt cực tiểu. 
Ta xét ví dụ sau: 
Ví dụ 1.2 
Xét hàm số: 
: \{(2,1)}f X     
4 2
1 2 1 2( , ) ( ) ( 2) ( 1)x x x f x x x    
Ta dễ dàng thấy rằng 
f
 liên tục trên 
X
 và 
( ) 0f x 
, 
x X 
. Với bất kì 
0 
, 
ta có 
(2,1 )
2
x
 
 thoả mãn 
( )
4
f x
 
 tức là ta có 
inf 0X f 
. Tuy vậy 
không tồn tại 
x X
 để 
( ) 0f x 
. Thật vậy, giả sử có 
0x X
 sao cho 
0( ) 0f x 
thì đưa tới 
0 (2,1)x X 
. Vậy hàm 
f
 không đạt cực tiểu trên 
X
. 
Khi giả thiết compact của tập 
X
 không còn thì hàm 
f
 có thể không đạt cực 
trị. Khi đó, ta xét khái niệm điểm 
 
xấp xỉ cực tiểu như sau: 
Với 
0 
cho trước, một điểm 
x X 
gọi là 
 
xấp xỉ cực tiểu của
( )f x
trên 
X
nếu 
inf ( ) infX Xf f x f   
. 
Điểm 
 
xấp xỉ cực tiểu bao giờ cũng tồn tại nếu 
f
 bị chặn dưới. Tuy nhiên, 
khi 
X
 là không gian mêtric đủ thì nguyên lí biến phân Ekeland phát biểu rằng 
ta có thể làm nhiễu hàm 
f
 để thu được một hàm đạt cực tiểu trên
X
. Sau đây 
ta xét nguyên lí biến phân Ekeland và một số phát biểu khác của nguyên lí 
này. 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
Định lí 1.1. (nguyên lí biến phân Ekeland ) [2] 
Cho 
( , )X d
 là không gian mêtric đủ và hàm 
 :f X   
 là hàm nửa liên 
tục dưới, bị chặn dưới. Giả sử 
0 
và 
x X 
 thoả mãn: 
( ) infXf x f  
. 
Khi đó với 
0 
 bất kì, tồn tại 
x X
sao cho: 
 (i) 
( , )d x x 
. 
 (ii) 
( ) ( , ) ( )f x d x x f x 
 
  
 
. 
 (iii) 
( ) ( , ) ( )f x d x x f x
 
  
 
, 
x X 
\
{ }x
. 
Trước hết ta chứng minh bổ đề sau: 
Bổ đề 1.1. [2] 
Cho số 
0 
, ta định nghĩa quan hệ thứ tự”
”trên 
X 
 như sau: 
1 1 2 2 1 2 1 2( , ) ( , ) ( ) ( , ) 0.x a x a a a d x x     
Cho 
S
 là tập đóng trong 
X 
 thoả mãn tồn tại 
m
sao cho nếu 
( , )x a S
thì
.a m
Khi đó với mỗi phần tử 
0 0( , )x a S
 luôn có phần tử 
( , )x a S
Sao cho 
0 0( , ) ( , )x a x a
 và 
( , )x a
 là phần tử cực đại trong 
S
 theo nghĩa 
( , )x a
( , )x a
,
( , )x a S 
và 
( , )x a  ( , )x a
. 
Chứng minh 
Dễ dàng chứng minh quan hệ ”
” có tính phản xạ, đối xứng, bắc cầu. 
Ta xây dựng dãy 
( , )n nx a
 trong 
S
 bằng quy nạp như sau: 
Bắt đầu từ 
0 0( , )x a S
 cho trước, giả sử 
( , )n nx a
 đã biết. 
Ta ký hiệu: 
nS   ( , ) ( , ) ( , )n nx a S x a x a 
. 
 inf ( , )n nm a x a S  
. 
Ta có 
nS
 là các tập đóng và khác rỗng. Khi đó lấy 
1 1( , )n n nx a S  
 sao cho: 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
1
2
n n
n n
a m
a a 
 
 (1.1) 
Do quan hệ vừa xây dựng có tính bắc cầu nên 
1n nS S 
 do đó 
1n nm m 
. Và 
như vậy ta có {
nS
} là dãy các tập đóng giảm dần trong 
S
, {
nm
} là dãy giảm 
dần trong 
 và bị chặn dưới và (1.1) có thể viết lại thành: 
1 1 1 0.
2
n n
n n n n
a m
a m a m  
    
Tiếp tục quá trình này ta thu được: 
1
1 1 ...
2 2
n n
n n n
a m a m
a m 
 
   
. 
Mặt khác 
1 1( , ) ( , )n nx a x a 
 nên ta lại có: 
1 1
1( , ) .
2
n
n n
a a a m
d x x  
 
 
Như vậy đường kính của 
nS
 tiến về 0. Suy ra dãy {
nS
} là dãy các tập đóng 
thắt dần có đường kính giảm dần về 0 trong 
X 
 (là không gian metric đầy 
đủ). Do đó tồn tại 
( , )x a S
 thoả mãn: 
 ( , ) n
n
x a S
 (1.2) 
Bây giờ ta sẽ chứng minh 
( , )x a
 là phần tử cần tìm. 
Thật vậy, từ định nghĩa của 
( , )x a
 ta có 
( , ) ( , )n nx a x a
,
n 
 do đó 
0 0( , ) ( , )x a x a
. Giả sử có 
( , )x a  ( , )x a
 với 
( , )x a S
 và 
( , )x a  ( , )x a
. Khi đó 
( , ) nx a S
 (
n 
), vì vậy 
( , )x a 
n
n
S
 điều này mâu thuẫn với (1.2). 
Và như vậy 
( , )x a
 là phần tử cực đại trong 
S
 thoả mãn yêu cầu của bổ đề. 
Chứng minh định lí 1.1 
Đặt 
S 
epif  ( , ) ( )x a X f x a   
. 
Dễ thấy 
( , ( ))x f x S  
. Do 
f
 là nửa liên tục dưới trên 
X
nên 
S
 là tập đóng 
trong 
X 
. 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
Ta áp dụng bổ đề 1.1 với 
 và phần tử 
( , ( ))x f x 
, ta luôn tìm được 
( , )x a
sao cho 
( , )x a
( , ( ))x f x 
 và 
( , )x a
 là phần tử lớn nhất trong 
S
. 
Từ định nghĩa của 
epif
 ta luôn có 
( , ( ))x f x S
, 
x X 
. Mặt khác 
( )f x a
nên 
( ) ( , ) 0f x a d x x
   
, mà 
( , )x a
 là phần tử lớn nhất trong 
S
 nên ta có 
( )f x a
, vậy 
( , ( ))x f x
 là phần tử lớn nhất trong 
S
. 
Bây giờ ta sẽ chứng minh 
x
 là điểm cần tìm. Thật vậy theo bổ đề ta có: 
( , ( ))x f x
( , ( ))x f x 
 tức là 
( ) ( , )f x d x x
 ( )f x
. 
Vậy khẳng định (ii) được chứng minh. 
Mặt khác, từ 
( ) ( ) ( , ) 0f x f x d x x 
  
 ta có 
( , ) ( ) ( )d x x f x f x 
  
. Hơn nữa 
( )f x
infX f 
 nên 
( ) ( )f x f x  
 do đo đó 
( , )d x x
 hay 
( , )d x x 
. 
Vậy khẳng định (i) được chứng minh. 
Do 
( , ( ))x f x
 là phần tử lớn nhất trong 
S
, mà 
( , ( ))x f x S
x X 
 nên 
( , ( ))x f x
( , ( ))x f x
,
x x 
do đó 
( ) ( , ) ( )f x d x x f x
 
, 
x x 
. 
Vậy (iii) được chứng minh. 
Nhận xét 1.2 
Điểm 
x
 tìm được là điểm cực tiểu chặt của hàm nhiễu 
( ) ( , )f x d x x
. Nếu 
nhỏ ta có thông tin tốt hơn về vị trí của 
x
 so với điểm 
x
 ban đầu, nhưng khi 
đó hàm nhiễu 
( ) ( , )f x d x x
 có sai khác tương đối so với 
( )f x
. Ngược lại, 
nếu 
 lớn ta không biết nhiều về vị trí điểm 
x
, nhưng hàm 
( ) ( , )f x d x x
 có 
thể không sai khác nhiều so với hàm 
( )f x
 ban đầu. 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
Hằng số 
 trong định lí trên rất linh hoạt. Chọn 
 
 ta có kết quả sau: 
Định lí 1.2. [1] 
Cho 
( , )X d
 là không gian mêtric đủ và hàm 
 :f X   
 là hàm nửa liên 
tục dưới, bị chặn dưới. Giả sử 
0 
và 
x X 
 thoả mãn: 
( ) infXf x f  
Khi đó tồn tại 
x X
sao cho: 
 (i) 
( , )d x x 
. 
 (ii) 
( ) ( , ) ( )f x d x x f x  
. 
 (iii) 
( ) ( , ) ( )f x d x x f x 
, 
x X 
\
{ }x
. 
Khi mà điểm xấp xỉ cực tiểu 
x
 không biết rõ, ta chỉ quan tâm đến tính chất 
của điểm 
x
 với hàm nhiễu, ta có dạng yếu của nguyên lí biến phân: 
Định lí 1.3. [1] 
Cho 
( , )X d
 là không gian mêtric đủ và hàm 
 :f X   
 là hàm nửa liên 
tục dưới, bị chặn dưới. Khi đó với mọi 
0 
 tồn tại 
x
 sao cho: 
( ) ( , ) ( )f x d x x f x 
, 
x X 
\
{ }x
. 
1.2.2.Nguyên lí biến phân Ekeland trong không gian hữu hạn chiều 
Trong không gian hữu hạn chiều, ta thu được kết quả của nguyên lí biến 
phân Ekeland với hàm nhiễu là hàm trơn (tức là hàm khả vi liên tục). 
Định lí 1.4. [19] 
Cho 
: { }Nf    
 là hàm nửa liên tục dưới, bị chặn dưới,
0 
 và 
1.p 
Giả sử 
0 
và 
Nx 
 thoả mãn: 
( ) inf Nf x f  
. 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên  
Khi đó tồn tại 
Nx
sao cho: 
 (i)
.x x  
 (ii)
( ) ( )
p
p
f x x x f x 
  
. 
 (iii) 
( )
p
p
f x x x
  ( )
p
p
f x x x
 
, 
Nx 
. 
Chứng minh 
Xét hàm 
( ) ( )
p
p
g x f x x x
  
. Khi đó 
( )g x
 là hàm nửa liên tục dưới, bị 
chặn dưới. ta thấy 
( )g x
 thoả mãn điều kiện bức tức là 
lim ( )
x
g x
 
. 
Lấy 
Na
 bất kì, xét tập 
 ( ) ( ) ( )Ng aL g x g x g a  
 do 
g
 là hàm nửa liên tục 
dưới nên 
( )g aL g
 là tập đóng trong N . 
Ta chứng minh 
( )g aL g
 là bị chặn N . Thật vậy, giả sử 
( )g aL g
 không bị chặn 
N
, khi đó tồn tại dãy 
{ }nx  ( )g aL g
 sao cho 
nx 
. Do 
g
 thoả mãn điều 
kiện bức trên N nên 
lim ( )n
n
g x
 
. Mặt khác 
nx  ( )g aL g
 nên 
( ) ( )ng x g a
( )n N 
, suy ra 
lim ( ) ( )n
n
g x g a
 (mâu thuẫn). Vậy 
( )g aL g
 là đóng