Một số vấn đề di truyền học

I. GEN I. 1. Về khái niệm Các thông tin di truyền sinh vật cần cho quá trình sinh trưởng, phát triển và sinh sản nằm trong phân tử ADN của nó. Những thông tin này nằm trong trình tự nucleotit của ADN và được tổ chức thành các gen. Mỗi gen thường chứa thông tin để tổng hợp một chuỗi polypeptit hoặc một phân tử ARN có chức năng riêng biệt. Xét về cấu trúc, mỗi gen là một đoạn ADN riêng biệt mang trình tự bazơ thường mã hoá cho trình tự axit amin của một chuỗi polypeptit. Các gen rất khác nhau về kích thước, có thể từ dưới 100 cặp đến vài triệu cặp bazơ. ở sinh vật bậc cao, các gen hợp thành các phân tử ADN rất dài nằm trong các cấu trúc được gọi là nhiễm sắc thể. ở người có khoảng 30.000 - 40.000 gen phân bố trên 23 cặp NST, trong đó có 22 cặp NST thường (autosome) và 1 cặp NST giới tính (X và Y). Như vậy, ở người có 24 loại NST khác nhau. Trên nhiễm sắc thể, các gen thường nằm phân tán và cách biệt nhau bởi các đoạn trình tự không mã hóa. Các đoạn trình tự này được gọi là các đoạn ADN liên gen. ADN liên gen rất dài, như ở người các gen chỉ chiếm dưới 30% toàn bộ hệ gen

doc37 trang | Chia sẻ: nguyenlinh90 | Lượt xem: 785 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Một số vấn đề di truyền học, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Một số vấn đề di truyền học I. GEN I. 1. Về khái niệm Các thông tin di truyền sinh vật cần cho quá trình sinh trưởng, phát triển và sinh sản nằm trong phân tử ADN của nó. Những thông tin này nằm trong trình tự nucleotit của ADN và được tổ chức thành các gen. Mỗi gen thường chứa thông tin để tổng hợp một chuỗi polypeptit hoặc một phân tử ARN có chức năng riêng biệt. Xét về cấu trúc, mỗi gen là một đoạn ADN riêng biệt mang trình tự bazơ thường mã hoá cho trình tự axit amin của một chuỗi polypeptit. Các gen rất khác nhau về kích thước, có thể từ dưới 100 cặp đến vài triệu cặp bazơ. ở sinh vật bậc cao, các gen hợp thành các phân tử ADN rất dài nằm trong các cấu trúc được gọi là nhiễm sắc thể. ở người có khoảng 30.000 - 40.000 gen phân bố trên 23 cặp NST, trong đó có 22 cặp NST thường (autosome) và 1 cặp NST giới tính (X và Y). Như vậy, ở người có 24 loại NST khác nhau. Trên nhiễm sắc thể, các gen thường nằm phân tán và cách biệt nhau bởi các đoạn trình tự không mã hóa. Các đoạn trình tự này được gọi là các đoạn ADN liên gen. ADN liên gen rất dài, như ở người các gen chỉ chiếm dưới 30% toàn bộ hệ gen. Xét ở mỗi gen, chỉ một mạch của chuỗi xoắn kép là mang thông tin và được gọi là mạch khuôn dùng để tạo ra phân tử ARN mang trình tự bổ trợ để điều khiển quá trình tổng hợp chuỗi polypeptit. Mạch kia được gọi là mạch không làm khuôn. Cả hai mạch trên phân tử ADN đều có thể được dùng làm mạch để mã hoá cho các gen khác nhau. Ngoài ra, người ta còn dùng một số thuật ngữ khác để chỉ mạch khuôn và mạch không làm khuôn, như mạch đối nghĩa / mạch mang nghĩa, mạch không mã hoá / mạch mã hoá. Cần chú ý là, mạch đối nghĩa và mạch không mã hóa chính là mạch khuôn để tổng hợp phân tử ARN. Khả năng lưu giữ thông tin di truyền của ADN là rất lớn. Với một phân tử ADN có n bazơ sẽ có 4n khả năn g tổ hợp trình tự bazơ khác nhau. Trong thực tế, chỉ một số lượng hạn chế các trình tự mang thông tin có ích (thông tin mã hóa các phân tử ARN hoặc protein có chức năng sinh học). I. 2. Về tổ chức của gen Hầu hết các gen phân bố ngẫu nhiên trên nhiễm sắc thể, tuy nhiên có một số gen được tổ chức thành nhóm, hoặc cụm. Có hai kiểu cụm gen, đó là các operon và các họ gen. ADN Trình tự điều hòa lac Z lac Y lac A Hình 1. Operon Lac. Ba gen (lac Z, lac Y và lac A) xếp liền kề nhau và được điều khiển chung ADN a) Các gen mã hóa ARN ribosom (rARN) Các trình tự liên gen (ADN đệm) Nhóm gen mã hóa β globin ở người ADN b) e Gg Ag jb1 b d Hình 2. Một họ gen đơn giản (a), và một họ gen phức tạp (b) Operon là các cụm gen ở vi khuẩn. Chúng chứa các gen được điều hoà hoạt động đồng thời và mã hoá cho các protein thường có chức năng liên quan với nhau. Ví dụ như operon lac ở E. coli chứa ba gen mã hoá cho các enzym mà vi khuẩn cần để thủy phân lactose. Khi có lactose làm nguồn năng lượng (và vắng mặt glucose) thì vi khuẩn cần ba enzym do operon lac mã hoá. Sự dùng chung một trình tự khởi đầu phiên mã (promoter) của các gen trong operon (hình 1) cho phép các gen đó được điều khiển biểu hiện đồng thời và sinh vật có thể sử dụng nguồn năng lượng một cách hiệu quả. ở các sinh vật bậc cao không có các operon, các cụm gen được gọi là các họ gen. Không giống như các operon, các gen trong một họ gen rất giống nhau, nhưng không được điều khiển biểu hiện đồng thời. Sự cụm lại của các gen trong họ gen có lẽ phản ánh nhu cầu cần có nhiều bản sao của những gen nhất định và xu hướng lặp đoạn của nhiều gen trong quá trình tiến hóa. Một số họ gen tồn tại thành nhiều cụm riêng biệt trên nhiều nhiễm sắc thể khác nhau. Hiện tượng này có lẽ là do sự tái cấu trúc ADN trong quá trình tiến hoá đã phá vỡ các cụm gen. Các họ gen có thể có cấu trúc đơn giản hoặc phức tạp. ở các họ gen đơn giản, các bản sao của gen giống hệt nhau. Ví dụ như họ gen mã hóa ARN ribosom 5S (rARN 5S). ở mỗi tế bào người, có khoảng 2000 cụm gen của gen này, phản ánh tế bào cần số lượng lớn sản phẩm của gen này (hình 2a). Trong khi đó, các họ gen phức tạp chứa các gen tương tự nhưng không giống hệt nhau. Ví dụ như họ gen globin ở người mã hóa cho cho các chuỗi polypeptit tương ứng với các loại globin a, b, g, e, và z (hình 2b) chỉ khác nhau vài axit amin. Các chuỗi polypeptit globin tương tác với nhau thành một phức hệ, và kết hợp với các phân tử hem để tạo ra hemoglobin (một loại protein vận chuyển oxy trong máu). I. 3. Trình tự khởi đầu phiên mã (promoter) Sự biểu hiện của gen được điều khiển rất chặt chẽ. Không phải tất cả các gen có trong ADN của tế bào đều được biểu hiện đồng thời. Những gen khác nhau được hoạt hoá biểu hiện vào những thời điểm và ở những tế bào khác nhau. Tất cả các gen được biểu hiện trong một tế bào sẽ xác định đặc tính và chức năng của tế bào đó. Ví dụ, các gen biểu hiện trong tế bào cơ khác với các gen được biểu hiện trong tế bào máu. Sự biểu hiện của gen được điều khiển bắt đầu từ một đoạn trình tự ADN đứng trước (nằm ngược dòng về phía đầu 5’) so với đoạn trình tự mã hóa được gọi là trình tự khởi đầu phiên mã (promoter, còn gọi là trình tự khởi động). Đoạn trình tự khởi động chứa trình tự đặc hiệu được ARN polymerase và các protein đặc biệt gọi là các yếu tố phiên mã nhận biết để gắn vào trong quá trình phiên mã của gen. Mức độ biểu hiện của gen trong tế bào được xác định bằng mức độ gắn kết (ái lực) của ARN polymerase và các yếu tố phiên mã với promoter. I. 4. Exon và Intron ở các sinh vật bậc cao (sinh vật nhân chuẩn), thông tin di truyền mã hoá trên các NST thường bị phân cắt thành nhiều đoạn trình tự ADN cách biệt được gọi là các exon. Các exon bị ngăn cách bởi những trình tự không mang thông tin có ích được gọi là các intron (hình 3). Số lượng các intron trong một gen biến động lớn, có thẻ từ 0 đến trên 50 phân đoạn. Độ dài của các intron và exon cũng rất biến động, nhưng các intron thường dài hơn và chiếm phần lớn trình tự của gen. Trước khi thông tin trong gen được sử dụng để tổng hợp phân tử protein tương ứng, thì các intron phải được cắt bỏ khỏi phân tử ARN nhờ quá trình được gọi là quá trình cắt bỏ (quá trình hoàn thiện phân tử mARN). Trong quá trình đó, các exon được giữ lại và nối lại với nhau thành một trình tự mã hoá liên tục. ADN Promoter Intron Exon Intron Exon Hình 3. Cấu trúc của gen. Việc xác định các intron trong trình tự một gen có thể thực hiện được nhờ các intron điển hình có trình tự bắt đầu là 5’-GU và kết thúc là AG-3’. Tuy vậy, thực tế ngoài những dấu hiệu này, việc cắt bỏ các intron còn cần các trình tự khác ở vùng nối giữa intron và exon (xem thêm mục III.1). I. 6. Gen giả (pseudogene) Có một số gen giống với các gen khác nhưng trình tự bazơ của chúng có những sai sót làm cho chúng không có khả năng chứa những thông tin sinh học hữu ích. Những gen đó được gọi là những gen giả và những sai sót hoặc đột biến trong trình tự ADN của chúng xuất hiện trong quá trình tiến hoá làm thông tin bị lẫn lộn đến mức không còn điều khiển quá trình sinh tổng hợp protein bình thường được nữa. Những gen giả là dấu vết của quá trình tiến hoá. Trải qua tiến hoá, những sự biến đổi ban đầu các bazơ gây mất thông tin được lặp đi lặp lại đến mức thậm trí trình tự bazơ của các gen giả khác hẳn với trình tự gen gốc ban đầu. Ví dụ như các gen globin giả trong các cụm gen globin. II. Mã DI TRUYềN II. 1. Khung đọc Ngoài việc quy định điểm bắt đầu quá trình tổng hợp protein, bộ ba mã khởi đầu (AUG) còn xác định khung đọc của trình tự ARN. Có thể có ba bộ ba cho bất kỳ một trình tự bazơ nào, phụ thuộc vào bazơ nào được chọn làm bazơ bắt đầu của codon. Thực tế trong quá trình tổng hợp protein, thường chỉ có một khung đọc được sử dụng. Còn hai khung đọc kia thường chứa một số bộ ba kết thúc ngăn cản chúng được sử dụng để tổng hợp trực tiếp nên phân tử protein (hình 4). Khung đọc 1. 5’ - AUG ACU AAG AGA UCC GG - 3’ Met Thr Lys Arg Ser Khung đọc 2. 5’ - A UGA CUA AGA GAU CCG G - 3' Stop Leu Arg Asp Pro Khung đọc 3. 5’ - AU GAC UAA GAG AUC CGG - 3’ Asp Stop Glu Ile Arg Hình 4. Mỗi trình tự ADN có thể đọc theo ba khung đọc khác nhau, phụ thuộc vào bazơ nào được chọn làm bazơ khởi đầu. Trên mỗi phân đoạn ADN mạch kép về lý thuyết có thể có tối đa sáu khung đọc mở (ORF) khác nhau. Đoạn trình tự nằm giữa một bộ ba khởi đầu và một bộ ba kết thúc tương ứng cùng khung đọc được gọi là khung đọc mở (ORF = open reading frame). Đặc điểm này được dùng để xác định các trình tự ADN mã hoá protein trong các dự án giải mã hệ gen. II.2. Tính vạn năng của mã di truyền Ban đầu, người ta tin rằng mã di truyền là vạn năng. Nghĩa là ở mọi sinh vật, các codon giống nhau đều quy định những axit amin như nhau. Tuy vậy, thực tế cho thấy có một số trường hợp ngoại lệ. Ví dụ, ở hệ gen ty thể có sự khác biệt về bộ ba khởi đầu và bộ ba kết thúc. Cụ thể, AUG bình thường là bộ ba kết thúc, thì ở ty thể nó lại mã hoá cho tryptophan; AGA và AGG bình thường quy định arginin, ở ty thể lại có vai trò là các bộ ba kết thúc; AUA bình thường mã hóa cho isoleucin thì ở ty thể lại xác định methionin. Người ta cho rằng những thay đổi này có thể tồn tại được là nhờ ty thể là một hệ thống kín. Ngoài hệ gen ty thể, một số trường hợp ngoại lệ khác cũng được tìm thấy ở một số sinh vật đơn bào. Ví dụ ở một số động vật nguyên sinh, các bộ ba UAA và UAG bình thường là các bộ ba kết thúc thì lại mã hoá cho axit glutamic. III. sự hoàn thiện marn ở eukaryote III.1. Cắt bỏ các intron Quá trình này xảy ra trong nhân nhằm cắt bỏ các trình tự intron không mã hóa khỏi phân tử tiền-mARN để hình thành nên phân tử mARN hoàn chỉnh chỉ chứa các trình tự mã hoá liên tục tương ứng với các exon. Sau đó, phân tử mARN hoàn chỉnh được chuyển ra tế bào chất để làm khuôn tổng hợp protein. Quá trình cắt bỏ intron phụ thuộc vào trình tự tín hiệu ở các đoạn nối giữa các intron và exon. Các intron điển hình được giới hạn bởi đầu 5’-GT và 3’-AG. Đoạn trình tự tín hiệu đầy đủ ở đầu 5’ gặp ở phần lớn các gen là: 5’-AGGTAAGT-3’ và ở đầu 3’ là 5’-YYYYYYNCAG-3’ (Y = pyrimidin, N = nucleotit bất kỳ). Việc cắt bỏ các intron được thực hiện bởi một phức hệ gọi là spliceosom, gồm phân tử tiền-mARN liên kết với các hạt ribonucleoprotein nhân kích thước nhỏ snRNP (small nuclear ribonucleoprotein particle, được đọc tắt là snớp). snRNP được tạo thành tự sự liên kết giữa snARN và protein. Có 5 loại snARN phổ biến được kí hiệu là U1, U2, U4, U5 và U6. Mỗi loại liên kết với một số phân tử protein để hình thành nên snRNP. Trừ U4 và U6 thường tìm thấy trong cùng một snRNP, còn các loại khác tìm thấy trong các snRNP riêng biệt. Quá trình cắt intron trải qua một số bước như sau (hình 5 và 6): U1 snRNP gắn vào vị trí cắt đầu 5’ của intron. Việc gắn này dựa trên nguyên tắc bổ trợ của U1 snARN có trong snRNP với trình tự ở đoạn nối với exon ở gần đầu 5’ của intron. U2 snRNP gắn vào một trình tự gọi là điểm phân nhánh nằm ngược dòng so với đoạn nối với exon về phía đầu 3’ của intron. Điểm phân nhánh là vị trí đặc thù của các intron, tại đó chứa một adenyl là vị trí gắn vào của đầu 5’ tự do của intron trong quá trình cắt bỏ intron. Phức hệ U4/U6 snRNP tương tác với U5 snRNP rồi gắn vào các phức hệ U1 và U2 snRNP làm hai đầu 5’ và 3’ của intron tiến lại gần nhau, tạo thành cấu trúc thòng lọng. U4 snRNP tách ra khỏi phức hệ, lúc này spliceosome chuyển thành dạng có hoạt tính cắt (exonuclease). snRNP cắt intron ở đầu 5’ tạo ra một đầu 5’ tự do. Đầu này sẽ liên kết với nucleotit A tại điểm phân nhánh vào vị trí nhóm 2’-OH (liên kết phosphodieste 5’-2’). Nhóm 3’-OH của adênyl này vẫn liên kết bình thường với nucleotit khác trong chuỗi. Intron được cắt ở phía đầu 5’ (intron vẫn ở dạng thòng lọng) và các exon liền kề ở hai đầu 5’ và 3’ của intron liên kết với nhau. Lúc này phức hệ snRNP rời khỏi phân tử ARN. Và quá trình cắt intron như vậy được lặp đi lặp lại. Hình 5. Quá trình cắt bỏ intron của phân tử mARN tiền thân ở sinh vật nhân chuẩn. Exon 1 Exon 2 Trình tự điểm phân nhánh Vị trí cắt đầu 5’ Vị trí cắt đầu 3’ Intron Tiền-mARN Sự hình thành cấu trúc thòng lọng Cắt đầu 3’ và nối các exon Các exon được nối với nhau Cấu trúc thòng lọng (intron) Exon 1 Exon 2 Trình tự điểm phân nhánh Vị trí cắt đầu 5’ Vị trí cắt đầu 5’ Intron Tiền mARN U1, U2 U2 U1 U5, U4/6 Exon 1 Exon 2 Phức hệ cắt intron (spliceosom) Intron U1 U2 U6 U4 U5 5’ 3’ Hình 6. Sự hình thành phức hệ cắt intron (spliceosom). Quá trình cắt intron như trên được tìm thấy ở các gen được phiên mã nhờ ARN polymerase II. Ngoài cơ chế trên đây, một số loại phân tử ARN có thể tự cắt bỏ intron. Quá trình cắt bỏ intron này không phụ thuộc vào protein và được gọi là các intron nhóm I. Cơ chế tự cắt của các intron nhóm I được tìm thấy ở các gen rARN, một số gen mã hóa protein trong ti thể và một số gen mã hóa mARN và tARN ở thực khuẩn thể. Một ví dụ về quá trình tự cắt của intron nhóm I (ở Tetrachynema) được mô tả như sau: Phân tử tiền-mARN được cắt ở vị trí nối với exon ở phía đầu 5’ và một nucleoit G gắn vào vị chí cắt này. Intron được cắt ở vị trí nối tại đầu 3’. Hai exon liền kề được nối lại với nhau. Phần intron được cắt ra đóng vòng tạo thành một phân tử ADN dạng vòng. Sản phẩm tạo ra là intron ở dạng mạch vòng còn phân tử ADN chứa các exon ở dạng mạch thẳng. Quá trình tự cắt của intron nhóm I do chính ARN tự xúc tác, và các ARN có hoạt tính như vậy được gọi là ribozym. Tuy vậy, hoạt tính tự xúc tác của ARN không nên coi là hoạt tính enzym. Bởi, không giống như enzym protein, các phân tử ARN không trở về dạng ban đầu sau khi phản ứng kết thúc. Việc tìm ra ARN có hoạt tính xúc tác gần giống với protein đã làm thay đổi quan điểm về nguồn gốc sự sống. Trước đây, người ta cho rằng protein là yếu tố thiết yếu để quá trình sao chép các nucleotit có thể xảy ra. Nhưng lý thuyết mới gần đây cho rằng các axit nucleic đầu tiên có khả năng tự sao chép thông qua hoạt tính kiểu ribozym. III.2. Lắp mũ Đầu 5’ của phân tử mARN ở sinh vật nhân chuẩn được sửa đổi bằng cách gắn thêm một nucleotit bị cải biến là 7-methylguanosin (7-mG); quá trình đó được gọi là sự lắp mũ. Mũ 7-mG được gắn nhờ enzym guanyltransferase nối GTP với nucleotit đầu tiên của mARN bằng liên kết triphotphat 5’® 5’ khác thường. Sau đó enzym methyl transferase sẽ gắn thêm nhóm -CH3 vào nitơ số 7 của vòng guanin; đồng thời thường gắn thêm cả vào nhóm 2’-OH của đường ribose của hai nucleotit kế tiếp. Việc tạo mũ giúp bảo vệ đầu 5’ của mARN không bị phân hủy bởi exonuclease trong tế bào chất, đồng thời làm tín hiệu cho ribosom nhận biết điểm bắt đầu của phân tử mARN. III.3. Gắn đuôi poly(A) Đầu 3’ của phân tử tiền-mARN của hầu hết các sinh vật nhân chuẩn được sửa đổi bằng cách thêm vào một đoạn trình tự poly A (còn được gọi là đuôi polyA) có thể dài tới 250 bazơ adenin. Sự sửa đổi này được gọi là đa adenin hóa và cần có một trình tự tín hiệu trên phân tử tiền-mARN. Đó là trình tự 5’-AAUAAA-3’ nằm gần đầu 3’ của phân tử tiền-mARN. Khoảng 11 - 20 bazơ tiếp theo có trình tự là YA (Y = pyrimidin), rồi tiếp đến là đoạn trình tự giàu GU nằm xuôi dòng. Có nhiều protein đặc hiệu có khả năng nhận biết và gắn vào đoạn trình tự tín hiệu tạo thành một phức hệ cắt mARN ở vị trí khoảng 20 nucleotit phía sau của trình tự 5’-AAUAAA-3’. Sau đó, enzym poly(A) polymerase sẽ bổ sung thêm các adenin vào đầu 3’ của mARN. Mục đích tạo đuôi A còn chưa rõ, nhưng có thể nó có vai trò bảo vệ cho mARN không bị phân hủy ở đầu 3’ bởi exonuclease. Tuy nhiên, một số mARN, như mARN mã hoá các protein histon, không có đuôi polyA (nhưng thường có thời gian tồn tại ngắn).. III.4. Tính bền vững của mARN Không giống như rARN và tARN có tính bền vững khá cao trong tế bào, các mARN có vòng đời tương đối ngắn. Điều đó có thể do tế bào cần điều tiết mức độ tổng hợp các loại protein trong tế bào tùy theo yêu cầu thông qua sự thay đổi mức độ phiên mã. Sự thay đổi lượng mARN đang dịch mã phản ánh sự thay đổi mức độ phiên mã. ở các tế bào vi khuẩn, mARN có thời gian bán phân hủy khoảng vài phút. Trong khi, ở các tế bào nhân chuẩn, mARN có thời gian bán phân hủy có thể lên đến hơn 6 giờ. Mặc dù một số mARN, như các mARN mã hoá globin cấu tạo nên hemoglobin, có thể tồn tại rất lâu trong tế bào. III.5. Các phân tử mARN được hoàn thiện theo các cách khác nhau Một trình tự ADN phiên mã chỉ cho ra một phân tử tiền-mARN, nhưng phân tử tiền-mARN có thể được hoàn thiện bằng các cách khác nhau để tạo ra nhiều loại phân tử mARN hoàn chỉnh khác nhau trước khi được sử dụng làm khuôn tổng hợp protein. Đó là các cơ chế cắt bỏ tiền-mARN khác nhau, trong đó tế bào sử dụng những điểm cắt khác biệt để loại bỏ hay giữ lại các exon trong quá trình cắt bỏ. Ngoài ra, việc tồn tại các tín hiệu poly(A) khác nhau trên phân tử tiền-mARN cũng có thể dẫn đến việc sinh ra các phân tử mARN có trình tự dài ngắn khác nhau ở đầu 3’. Ví dụ, việc sử dụng điểm poly(A) nằm phía trước điểm kết thúc đoạn trình tự mã hoá có thể loại bỏ một số exon nằm sau nó và sinh ra mARN mã hóa cho một loại protein ngắn hơn. Một phân tử tiền-mARN có thể được cắt bỏ các intron theo những cách khác nhau cùng lúc hoặc ở những giai đoạn phát triển khác nhau của một tế bào, hoặc khác nhau giữa các tế bào khác nhau. Các protein được sinh ra theo các cơ chế này thường có quan hệ với nhau, song chúng thường biểu hiện chức năng hoặc có đặc điểm riêng. Ví dụ, quá trình hoàn thiện phân tử tiền-mARN của globulin miễn dịch dẫn đến việc tổng hợp các protein có thể chứa hoặc không chứa các trình tự axit amin kỵ nước cho phép nó liên kết được vào màng tế bào. Điều này giúp tạo ra nhiều dạng globulin miễn dịch có thể liên kết với màng và các dạng để tiết ra khỏi tế bào. Các phân tử tiền-mARN cũng còn có thể trải qua quá trình sửa đổi trình tự ARN. Trong quá trình đó, trình tự của phân tử tiền-mARN bị biến đổi bằng cách thêm vào, bớt đi hay thay thế các bazơ. Sự sửa đổi trình tự ARN được xác định đầu tiên ở một số nguyên sinh động vật ký sinh. ở những loài này, người ta thấy các bản phiên mã của nhiều gen ty thể bị sửa đổi bằng cách được bổ sung thêm các gốc uracil. Quá trình này cũng gặp ở động vật có xương sống, nhưng mức độ sửa đổi ít hơn nhiều. ở người, phân tử tiền-mARN của gen apolipoprotein B bị sửa đổi ở tế bào ruột non bằng cách thay thế bazơ C bằng U để tạo nên một bộ ba kết thúc, dẫn đến việc tổng hợp một phân tử protein ngắn hơn. Trong khi đó ở tế bào gan, nơi trình tự ARN không bị sửa đổi, protein đó có độ dài đầy đủ. IV. Về bệnh di truyền VI.1. Các dạng bệnh di truyền Có một nhóm đa dạng các bệnh lý và rối loạn gây ra do các đột biến gen và sự thay đổi bất thường của nhiễm sắc thể. Các rối loạn có bản chất di truyền và có thể chia làm 3 nhóm chính: Các sai hỏng đơn gen Các sai hỏng đơn gen còn được gọi là các rối loạn di truyền Mendel (Mendelian disorders), các rối loạn đơn gen (monogenic disorders), hay các rối loạn đơn locut (single locus disorders). Đây là một nhóm các dạng bệnh lý gây ra do sự có mặt của một gen đột biến trong cơ thể bị bệnh. Đột biến gen làm thay đổi thông tin mã hóa của gen đó và, hoặc dẫn đến việc tạo ra phân tử protein bị sai hỏng về chức năng, hoặc thậm trí ức chế hoàn toàn sự tổng hợp protein mà gen đó mã hóa. Sự thiếu hụt protein do đột biến gen gây nên sự biểu hiện của các trạng thái bệnh lý. Đột biến gen có thể được di truyền giữa các thế hệ (từ bố, mẹ sang con, cháu) hoặc xuất hiện một cách tự phát (de novo) trong tế bào sinh dục (tinh trùng hoặc trứng) trong cơ thể bố hoặc mẹ, và sau thụ tinh, đứa trẻ hình thành mang đột biến trong mọi tế bào. Các rối loạn nhiễm sắc thể Có các dạng bệnh lý gây ra do sự mất đi hoặc thêm vào một hoặc một số nhiễm sắc thể, hay do sự thay đổi cấu trúc của nhiễm sắc thể. Phần lớn các rối loạn bất thường về nhiễm sắc thể xuất hiện ngay trong các tế bào sinh dục của cơ thể bố hoặc mẹ, nhưng cũng có những trường hợp gây ra do di truyền từ thế hệ trước. Các dạng bất thường về số lượng nhiễm sắc thể (biến dị số lượng nhiễm sắc thể) có thể biểu hiện bằng sự tăng lên số lượng bộ nhiễm sắc thể đơn bội (hiện tượng đa bội thể), hoặc do sự thêm và hoặc mất đi của từng nhiễm sắc thể riêng lẻ (hiện tượng lệch bội). Các dạng bất thường về cấu trúc nhiễm sắc thể có thể gây ra do sự đứt gẫy nhiễm sắc thể liên quan đến các hiệ
Tài liệu liên quan