Một quá trình ngẫu nhiên là ngược lại với một quá trình có xác định trước
(hay hệ thống xác định) trong lý thuy ết xác suất. Thay vì chỉ xem xét một khả
năng 'thực tế' làm thế nào mà một quá trình có thể diễn tiến theo thời gian
(như là trong trường hợp, ví dụ như, các nghiệm của một phương trình vi
phân thường), trong một quá trình ngẫu nhiên có một số bất định nào đó
trong diễn tiến tương lai miêu tả bởi các phân bố xác suất. Điều này nghĩa là
ngay cả nếu như điều kiện đầu (hay điểm bắt đầu) là biết trước, có nhiều khả
năng có thể xảy ra, nhưng một số quỹ đạo có nhiều khả năng xảy ra hơn các
quỹ đạo khác.
7 trang |
Chia sẻ: lylyngoc | Lượt xem: 2047 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Quá trình ngẫu nhiên, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Quá trình ngẫu nhiên
Một quá trình ngẫu nhiên là ngược lại với một quá trình có xác định trước
(hay hệ thống xác định) trong lý thuyết xác suất. Thay vì chỉ xem xét một khả
năng 'thực tế' làm thế nào mà một quá trình có thể diễn tiến theo thời gian
(như là trong trường hợp, ví dụ như, các nghiệm của một phương trình vi
phân thường), trong một quá trình ngẫu nhiên có một số bất định nào đó
trong diễn tiến tương lai miêu tả bởi các phân bố xác suất. Điều này nghĩa là
ngay cả nếu như điều kiện đầu (hay điểm bắt đầu) là biết trước, có nhiều khả
năng có thể xảy ra, nhưng một số quỹ đạo có nhiều khả năng xảy ra hơn các
quỹ đạo khác.
Trong trường hợp đơn giản nhất (thời gian rời rạc), một quá trình ngẫu nhiên
chỉ là một chuỗi của các biến thời gian gọi là chuỗi thời gian (time series) (ví
dụ, xem xích Markov). Một dạng cơ sở khác của một quá trình ngẫu nhiên là
một một trường ngẫu nhiên, với tập miền là một miền của không gian, nói
một cách khác, một hàm số ngẫu nhiên mà biến được chọn ra từ một khoảng
của các giá trị thay đổi một cách liên tục. Một tiếp cận quá trình ngẫu nhiên
xem chúng như hàm số với một hay nhiều biến xác định (các 'đầu vào', đa số
được xem như là 'thời gian') mà các giá trị (các 'đầu ra') là các biến ngẫu
nhiên: các giá trị không xác định có những phân bố xác suất nào đó. Những
biến ngẫu nhiên tương ứng với các thời gian khác nhau (hay các điểm, trong
trường hợp trường ngẫu nhiên) có thể hoàn toàn khác nhau. Yêu cầu chính là
những đại lượng ngẫu nhiên này đều có cùng một kiểu.[1] Mặc dù các giá trị
ngẫu nhiên của một quá trình ngẫu nhiên tại các thời điểm khác nhau có thể
là các biến ngẫu nhiên độc lập, trong hầu hết các tình huống xem xét đến
chúng đều có những liên hệ hỗ tương phức tạp về mặc thống kê.
Các ví dụ quen thuộc của các quá trình được mô phỏng như là các chuỗi ngẫu
nhiên bao gồm thị trường chứng khoán và thay đổi của tỉ giá ngoại tệ, các tín
hiệu như là lời nói, âm thanh và hình ảnh, dữ liệu y khoa như là EKG, EEG,
huyết áp hay nhiệt độ, và các chuyển động ngẫu nhiên như chuyển động
Brown hay là các bước ngẫu nhiên (random walk). Ví dụ của các trường ngẫu
nhiên bao gồm các ảnh tĩnh, địa hình ngẫu nhiên, hay là hỗn hợp của các vật
liệu không đồng nhất.
Mục lục
1 Định nghĩa chuẩn và các tính chất cơ bản
o 1.1 Định nghĩa
o 1.2 Các phân bố hữu hạn chiều
2 Xây dựng các quá trình ngẫu nhiên
o 2.1 Phép mở rộng Kolmogorov
o 2.2 Tính khả ly, hay là thứ mà phép mở rộng Kolmogorov không
cung cấp
3 Các ví dụ và các trường hợp đặc biệt
o 3.1 Thời gian
o 3.2 Các ví dụ
4 Liên kết ngoài
5 Chú thích
6 Tham khảo
Định nghĩa chuẩn và các tính chất cơ bản
Định nghĩa
Cho một không gian xác suất , một quá trình ngẫu nhiên với
không gian trạng thái X là một tập hợp của các biến ngẫu nhiên với giá trị
trong X được đánh số thứ tự bởi một tập hợp T ("thời gian"). Nghĩa là, một
quá trình ngẫu nhiên F là một tập hợp
với mỗi là một biến ngẫu nhiên có giá trị trong X.
Một cải tiến G của quá trình F là một quá trình ngẫu nhiên trên cùng một
không gian trạng thái, với cùng tập hợp tham số T sao cho
.
Các phân bố hữu hạn chiều
Cho một quá trình ngẫu nhiên F với giá trị nằm trong X. Với bất cứ tập con
hữu hạn , chúng ta có thể viết , với và
giới hạn là một biến ngẫu nhiên có giá trị ở trong
. Phân bố của biến ngẫu nhiên này là một độ đo xác suất
trên . Những biến ngẫu nhiên này được gọi là phân bố hữu hạn chiều
của F.
Dưới những giới hạn tôpô thích hợp, một tập thích hợp của các phân bố hữu
hạn chiều có thể được sử dụng để định nghĩa một quá trình ngẫu nhiên (xem
mở rộng Kolmogorov trong mục kế tiếp).
Xây dựng các quá trình ngẫu nhiên
Trong quá trình tiên đề lý thuyết xác suất bằng lý thuyết đo, vấn đề là xây
dựng một sigma-đại số của các tập đo được của không gian các hàm số, và
đặt lên đó một độ đo hữu hạn. Với mục đích này theo truyền thống người ta
sử dụng một phương pháp gọi là mở rộng Kolmogorov.
Có một cách tiên đề hóa lý thuyết xác suất khác thông qua các giá trị mong
đợi trên đại số C-sao của các biến ngẫu nhiên. Trong trường hợp này phương
pháp đó được gọi là xây dựng Gelfand-Naimark-Segal.
Điều này giống như là hai cách tiếp cận lý thuyết độ đo và tích phân, khi
người ta có chọn lựa xây dựng độ đo trên các tập hợp trước và định nghĩa tích
phân sau đó, hay là xây dựng các tích phân trước và định nghĩa độ đo tập hợp
như là tích phân của các hàm số đặc trưng.
Phép mở rộng Kolmogorov
Phép mở rộng Kolmogorov được diễn đạt theo quá trình sau: giả sử một độ
đo xác suất trên không gian của các hàm số tồn tại, thì nó có thể
được sử dụng để chỉ ra phân bố xác suất liên kết của các biến ngẫu nhiên hữu
hạn chiều . Bây giờ, từ phân bố xác suất n-chiều này ta có
thể suy ra một phân bố xác suất biên (n − 1)-chiều cho .
Chú ý rằng điều kiện tương thích hiển nhiên, rằng phân bố xác suất biên này
là cùng loại với phân bố được suy ra từ quá trình ngẫu nhiên, là không cần
thiết. Một điều kiện như vậy là đúng, ví dụ, nếu như quá trình ngẫu nhiên là
quá trình Wiener (trong trường hợp này các phân bố biên là tất cả các phân
bố gaussian của loại hàm mũ) nhưng không tổng quát cho tất cả các quá trình
ngẫu nhiên. Khi điều kiện này được biểu diễn dưới các hàm mật độ xác suất,
kết quả được gọi là phương trình Chapman-Kolmogorov.
Định lý mở rộng Kolmogorov bảo đảm sự tồn tại của một quá trình ngẫu
nhiên với một họ của các phân bố xác suất hữu hạn chiều thỏa mãn điều kiện
tương thích Chapman-Kolmogorov.
Tính khả ly, hay là thứ mà phép mở rộng Kolmogorov không cung cấp
Nhớ lại rằng, trong hệ tiên đề Kolmogorov, các tập hợp đo được là các tập có
xác suất, hay nói các khác, là các tập hợp liên quan tới các câu hỏi có/không
có một câu trả lời mang tính xác suất.
Phép mở rộng Kolmogorov bắt đầu bằng các tuyên bố rằng để gọi là đo được
tất cả các tập hợp hàm số với hữu hạn tọa độ được giới hạn
nằmg trong các tập con đo được của . Nói một cách khác, nếu một câu hỏi
có/không về hàm số f có thể được trả lời bằng cách xem xét các giá trị của
nhiều nhất là hữu hạn tọa độ, thì nó có một câu trả lời mang tính xác suất.
Trong lý thuyết độ đo, nếu chúng ta có một họ vô hạn đếm được của các tập
hợp đo được, thì hợp và giao của chúng là một tập đo được. Cho mục đích
của chúng ta, điều này nghĩa là các câu hỏi có/không phụ thuộc vào bao
nhiêu tọa độ đếm được mà chúng ta có câu trả lời xác suất.
Điều khả quan là phép mở rộng Kolmogorov làm chúng ta có thể xây dựng
một quá trình ngẫu nhiên với các phân bố hữu hạn chiều khá là tùy ý. .
Các ví dụ và các trường hợp đặc biệt
Thời gian
Một trường hợp đặc biệt là khi thời gian là một tập hợp rời rạc, ví dụ các số
tự nhiên không âm {0, 1, 2, 3, ...}. Trường hợp đặc biệt quan trọng khác là
khi .
Các quá trình ngẫu nhiên có thể được định nghĩa trên các chiều không gian
cao hơn bằng cách gắn một biến ngẫu nhiên đa chiều vào từng điểm của tập
chỉ số, tương đương với việc sử dụng một tập chỉ số đa chiều
(multidimensional index set). Thật vậy một biến ngẫu nhiên đa chiều tự nó có
thể được xem như là một quá trình ngẫu nhiên với tập chỉ số T = {1, ..., n}.
Các ví dụ
Các quá trình ngẫu nhiên liên tục được gọi là các quá trình Wiener. Trong
dạng nguyên thủy bài toán liên quá đến chuyển động của một hạt chuyển
động trên một bề mặt chất lỏng, nhận các cú "hích" từ các phân tử của chất
lỏng. Hạt đó được xem như là chịu một lực ngẫu nhiên mà, bởi vì các phân tử
là rất nhỏ và rất gần nhau, được xem như là liên tục và, bởi vì hạt đó bị giới
hạn trong mặt chất lỏng bởi sức căng bề mặt, tại mỗi điểm của thời gian nó là
một vecto song song với bề mặt