Hệ thống giá cạnh tranh hoàn hảo
• Chúng ta giả định rằng mọi thị trường là cạnh tranh hoàn hảo
– Có một vài sản phẩm đồng nhất trong nền kinh tế
• Gồm cả hàng hoá tiêu dùng và yếu tố sản xuất
– Mỗi hàng hoá có mức giá cân bằng
– Không có chi phí vận chuyển và giao dịch
– Mọi thành viên đều có thông tin hoàn hảo
84 trang |
Chia sẻ: thanhtuan.68 | Lượt xem: 1158 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Bài giảng Lý thuyết kinh tế học vi mô: Nguyên lý và mở rộng - Chương 15 Cân bằng tổng thể, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Chương 15
CÂN BẰNG TỔNG THỂ
Copyright ©2007 FOE. All rights reserved.
Hệ thống giá cạnh tranh hoàn hảo
• Chúng ta giả định rằng mọi thị trường là cạnh
tranh hoàn hảo
– Có một vài sản phẩm đồng nhất trong nền kinh tế
• Gồm cả hàng hoá tiêu dùng và yếu tố sản xuất
– Mỗi hàng hoá có mức giá cân bằng
– Không có chi phí vận chuyển và giao dịch
– Mọi thành viên đều có thông tin hoàn hảo
Quy luật một giá
• Sản phẩm đồng nhất được trao đổi tại cùng
mức giá mà không làm ảnh hưởng đến
người mua hoặc người bán
– Nếu một hàng hoá được trao đổi tại 2 mức giá
khác nhau, người mua sẽ đổ xô vào mua ở
những nơi hàng hoá đó rẻ hơn và hãng sẽ bán
sản phẩm của nó tại nơi có mức giá cao hơn
• Những hoạt động đó có xu hướng làm cân bằng giá
của hàng hoá
Giả định của cạnh tranh hoàn hảo
• Rất nhiều người mua
– Mọi người đều chấp nhận mọi mức giá
– Mọi người đều muốn tối đa hoá lợi ích với ngân
sách hạn chế
• Rất nhiều người bán
– Mọi hãng đều muốn tối đa hoá lợi nhuận
– Mọi hãng đều chấp nhận mọi mức giá
Hai thị trường phụ thuộc nhau
DVDM
Giá Giá
SM SV
$6,00
QM QV
$3,00
$6,35
Q’M
S*M
Giả sử chính phủ đánh $1 thuế
lên mỗi vé xem phim
Q’V
D’V
$3,50
Phân tích cân bằng tổng quát:
Giá vé xem phim tăng sẽ làm tăng
cầu đối với băng video.
Băng videoVé xem phim
Hai thị trường phụ thuộc nhau
DVDM
Giá
Băng video
Giá
Vé xem phim
SM SV
$6,00
QM QV
$3,00
Tác dộng phản hồi
tiếp tục
$3,58
Q*V
D*V
$6,35
Q’M
D*M
$6,82
Q*M
S*M
Q’V
D’V
$3,50
D’M
Q”M
$6,75
Giá băng video tăng
làm tăng cầu đối với phim
Cân bằng tổng thể
• Giả sử chỉ có hai hàng hoá X và Y
• Mọi cá nhân đều có sở thích như nhau
– Thể hiện bằng biểu đồ đường bàng quan
• Đường giới hạn khả năng sản xuất có thể
được sử dụng để chỉ ra mối quan hệ như thế
nào giữa đầu vào và đầu ra
Mô hình hộp Edgeworth
• Xây dựng đường giới hạn khả năng sản xuất
đối với X và Y bắt đầu bằng giả định lượng
đầu vào K và L cố định
• Hộp Edgeworth thể hiện mọi khả năng lượng
K và L được sử dụng để sản xuất ra X và Y
– Bất cứ điểm nào trong hộp đều thể hiện tính toàn
dụng nhân công trong phân bổ nguồn lực sẵn có
đối với X và Y
Mô hình hộp Edgeworth
OX
OY
Tổng lao động
T
ổn
g
vố
n
A
V
ốn
c
ho
X
V
ốn
c
ho
Y
Lao động cho YLao động cho X Vốn sản
xuất Y
Vốn sản
xuất X
Lao động sản xuất Y
Lao động sản xuất X
Mô hình hộp Edgeworth
• Nhiều phân bổ trong hộp Edgeworth không
hiệu quả
– Có khả năng sản xuất được nhiều X và Y hơn
bằng việc thay đổi vốn và lao động
• Giả định rằng các thị trường cạnh tranh thể
hiện sự lựa chọn đầu vào hiệu quả
• Phải tìm những phân bổ hiệu quả
– Chúng minh hoạ kết quả sản xuất hiện tại
Mô hình hộp Edgeworth
• Sử dụng biểu đồ các đường đồng lượng đối
với hai hàng hoá
– Biểu đồ đường đồng lượng đối với hàng hoá X
sử dụng gốc toạ độ OX
– Biểu đồ đường đồng lượng đối với hàng hoá Y
sử dụng gốc toạ độ OY
• Những phân bổ hiệu quả sẽ xảy ra khi các
đường đồng lượng tiếp xúc nhau
Mô hình hộp Edgeworth
OX
OY
Tổng lao động
T
ổn
g
vố
n
X2
X1
Y1
Y2
A
Điểm không hiệu quả do có thể tăng X từ X1 lên X2 với Y không đổi
(thông qua việc vận động dọc theo Y1)
Mô hình hộp Edgeworth
OX
OY
Tổng lao động
T
ổn
g
vố
n
X2
X1
Y1
Y2
A
Chúng ta cũng có thể tăng Y từ Y1 lên Y2 với X không thay đổi thông qua
việc vận động dọc theo X1
Mô hình hộp Edgeworth
OX
OY
Tổng lao động
T
ổn
g
vố
n
Tại mỗi điểm hiệu quả, MRTS (của K cho L) bằng nhau trong việc
sản xuất của cả X và Y
X2
X1
X4
X3
Y1
Y2
Y3
Y4
P4
P3
P2
P1
Đường giới hạn khả năng sản xuất
• Quỹ tích của những điểm hiệu quả thể hiện
sản lượng tối đa của Y có thể được sản xuất ra
với bất cứ mức sản lượng nào của X
– Sử dụng thông tin này để xây dựng đường giới
hạn khả năng sản xuất (PPF)
• Thể hiện mức sản lượng của X và Y có thể được sản
xuất ra với đầu vào vốn và lao động cố định
Đường giới hạn khả năng sản xuất
X
Y
P4
P3
P2
P1
Y1
Y2
Y3
Y4
X1 X2 X3 X4
OX
OY
Mối điểm hiệu quả của sản xuất trở
thành một điểm trên đường PPF
Độ dốc âm của đường PPF là tỷ
lệ chuyển đổi sản phẩm (RPT)
Tỷ lệ chuyển đổi sản phẩm
• Tỷ lệ chuyển đổi sản phẩm (RPT) giữa hai
sản lượng là độ dốc âm của đường giới hạn
khả năng sản xuất
PPF of slope ) cho ( YXRPT
) (along ) cho ( YX OOdX
dY
YXRPT
Tỷ lệ chuyển đổi sản phẩm
• Tỷ lệ chuyển đổi sản phẩm thể hiện sự đánh
đổi kỹ thuật giữa hai hàng hoá X và Y như
thế nào trong khi tiếp tục giữ nguyên năng
suất các yếu tố đầu vào một cách hiệu quả
Độ dốc của đường PPF
• Đường PPF thể hiện RPT tăng dần
– Dạng cong lõm của đường PPF là đặc tính của hầu hết
thực trạng sản xuất
• RPT bằng tỷ lệ giữa MCX và MCY
Y
X
MC
MC
MPT
Độ dốc của đường PPF
• Khi sản xuất X tăng và sản xuất Y giảm, tỷ
lệ MCX/MCY tăng
– Xảy ra nếu cả hai hàng hoá được sản xuất theo
quy luật lợi suất giảm dần
• Tăng sản xuất X sẽ làm tăng MCX, trong khi giảm
sản xuất Y sẽ làm giảm MCY
– Điều này cũng có thể xảy ra khi một số đầu vào
phù hợp với việc sản xuất X hơn so với sản xuất
Y
Độ dốc của đường PPF
• Tuy nhiên chúng ta đã giả định các đầu vào
đồng nhất
• Cần phải giải thích rằng các yếu tố đầu vào
đồng nhất và tính kinh tế của quy mô không
thay đổi
• Đường PPF cong lõm nếu hàng hoá X và Y sử
dụng các đầu vào với tỷ lệ khác nhau
Chi phí cơ hội
• Đường PPF giải thích rằng có rất nhiều tập
hợp hiệu quả đối với hai hàng hoá
• Sản xuất thêm một hàng hoá buộc phải giảm
sản xuất hàng hoá khác
– Các nhà kinh tế gọi đó là Chi phí cơ hội
Chi phí cơ hội
• Chi phí cơ hội của việc có thêm 1 đơn vị
hàng hoá X là số lượng hàng hoá Y giảm đi
bao nhiêu đơn vị
• Như vậy, chi phí cơ hội được xác định tốt
nhất như theo RPT (của X đối với Y) tại điểm
trên đường PPF
– Chi phí cơ hội tăng dần khi ngày càng sản xuất
thêm X
Các khả năng sản xuất
• Giả sử hai hàng hoá (X) và (Y) được lao
động sản xuất ra theo hàm sản xuất sau:
XLX YLY 2
1
• Nếu lao động không đổi là 100 thì khi đó
LX + LY = 100
hoặc
X2 + 4Y2 = 100
Các khả năng sản xuất
• Lấy tổng đạo hàm ta có:
2X.dX + 8Y.dY = 0
hoặc
Y
X
RPT
dX
dY
4
• Lưu ý: RPT tăng khi X tăng và Y giảm
Xác định giá cân bằng
• Chúng ta có thể sử dụng đường PPF thông
qua tập hợp các đường bàng quan để chỉ ra
giá cân bằng được xác định như thế nào
– đường bàng quan thể hiện sở thích của mỗi cá
nhân đối với hai hàng hoá
Xác định giá cân bằng
X
Y
Y1
X1
Nếu giá của X và Y là PX và PY thì hạn
chế ngân sách xã hội là C
U1
U2
U3
Y
X
P
P
slope
C
C
Sản lượng sẽ là X1, Y1
Cầu cá nhân là X1’, Y1’
X1’
Y1’
Xác định giá cân bằng
X
Y
Y1
X1
Như vậy, dư cầu hàng hoá X và dư cung
hàng hoá Y
U1
U2
U3
Y
X
P
P
slope
C
C
Giá của X sẽ tăng và giá của
Y sẽ giảm
X1’
Y1’
X1*
Y1*
Dư cầu
Dư
cung
Xác định giá cân bằng
X
Y
Y1
X1
U1
U2
U3
Y
X
P
P
slope
C
C
Các mức giá cân bằng sẽ là PX* và
PY*
X1’
Y1’
C*
C*
X1*
Y1*
*
*
slope
Y
X
P
P
Sản lượng cân bằng sẽ là X1*
và Y1*
Giá cân bằng tổng thể
• Giả sử đường PPF như sau:
X 2 + 4Y 2 = 100
• Giả sử sở thích của cộng đồng là:
XYYXU ),( U
Giá cân bằng tổng thể
• Trong cạnh tranh hoàn hảo, các hãng tối đa
hoá lợi nhuận sẽ đảm bảo điều kiện RPT =
PX /PY
Y
X
P
P
Y
X
RPT
4
• Đối với người tiêu dùng, tối đa hoá lợi ích
khi
Y
X
P
P
X
Y
MRS
Giá cân bằng tổng thể
• Cân bằng tổng thể đòi hỏi các hãng và các
cá nhân phải có cùng một tỷ lệ giá
MRS
X
Y
P
P
Y
X
RPT
Y
X
4
hoÆc
X 2 = 4Y 2
Giá cân bằng tổng thể
• Cân bằng cũng thể hiện trên đường PPF
X 2 + 4Y 2 = 2X 2 = 100
07.750* X
54.35.12* Y
2
1
50
5.12
*
*
Y
X
P
P
So sánh phân tích tĩnh
• Tỷ lệ giá cân bằng sẽ có xu hướng tiếp tục
tồn tại đến khi sở thích hoặc công nghệ sản
xuất thay đổi
• Nếu sở thích dịch về phía hàng hoá X, PX
/PY sẽ tăng và sẽ sản xuất nhiều hàng hoá X
và ít hàng hoá Y
– Chúng ta vận động theo chiều kim đồng hồ dọc
đường PPF
So sánh phân tích tĩnh
• Tiến bộ kỹ thuật trong sản xuất hàng hoá X
sẽ dịch chuyển đường PPF ra bên ngoài
– Giá của X tương đối thấp hơn
– Nhiều X hơn được tiêu dùng
• Giả định X là hàng hoá thông thường
– Tác động lên Y rất mơ hồ
Tiến bộ kỹ thuật trong sản xuất X
X
Y
Y1
X0
Tiến bộ kỹ thuật trong sản xuất X làm
dịch chuyển đường PPF ra ngoài
U1
U2
U3
Giá X sẽ giảm xuống
X1
Y0 Tiêu dùng nhiều X hơn
Tranh luận về luật hạn chế nhập khẩu ngô
• Thuế nhập khẩu ngũ cốc cao đã được chính
phủ Anh đặt ra sau cuộc chiến của Napoleon
• Các nhà kinh tế tranh luận về ảnh hưởng của
“luật hạn chế nhập khẩu” giữa những năm
1829 và 1845
– Những ảnh hưởng nào sẽ làm hạn chế của luật
thuế này lên giá các yếu tố đầu vào?
Tranh luận về luật hạn chế nhập khẩu ngô
Lượng ngũ cốc (X)
Lượng hàng
hoá công
nghiệp (Y)
X0
Nếu luật hạn chế nhập ngô ngăn chặn
được thương mại, sản lượng sẽ là X0 và
Y0
U1
U2
Giá cân bằng sẽ là
PX* và PY*
Y0
*
*
slope
Y
X
P
P
Tranh luận về luật hạn chế nhập khẩu ngô
Y1
X0
Xoá bỏ luật sẽ thay đổi các mức giá
thành PX’ và PY’
U1
U2
Sản lượng sẽ là X1’ và Y1’
X1
Y0
'
'
slope
Y
X
P
P
X1’
Y1’
Cầu cá nhân sẽ là X1 và Y1
Lượng ngũ cốc (X)
Lượng hàng
hoá công
nghiệp (Y)
Tranh luận về luật hạn chế nhập khẩu ngô
Y1
X0
Ngũ cốc nhập khẩu sẽ là X1 – X1’
U1
U2
Phần nhập khẩu sẽ được tài trợ
bởi việc xuất khẩu hàng hoá công
nghiệp là Y1’ – Y1
X1
Y0
'
'
slope
Y
X
P
P
X1’
Y1’
Nhập ngũ cốc
Xuất
hàng hoá
Lượng ngũ cốc (X)
Lượng hàng
hoá công
nghiệp (Y)
Tranh luận về luật hạn chế nhập khẩu ngô
• Chúng ta sử dụng hộp Edgeworth để xem
xét ảnh hưởng của luật hạn chế nhập ngô
lên việc sử dụng vốn và lao động
• Nếu luật bãi bỏ, việc sản xuất hàng hoá
công nghiệp sẽ tăng và sản xuất ngũ cốc sẽ
giảm
Tranh luận về luật hạn chế nhập khẩu ngô
OX
OY
Tổng lao động
T
ổn
g
vố
n
Việc bãi bỏ luật này sẽ đem lại kết quả trong việc dịch chuyển giá từ
P3 lên P1 nơi có nhiều Y và ít X được sản xuất
X2
X1
X4
X3
Y1
Y2
Y3
Y4
P4
P3
P2
P1
Tranh luận về luật hạn chế nhập khẩu ngô
• Nếu giả định rằng sản xuất ngũ cốc cần
nhiều vốn, dịch chuyển từ P3 đến P1 gây ra
tăng tỷ lệ K và L trong cả hai ngành
– Giá của vốn sẽ giảm
– Giá của lao động sẽ tăng
• Bãi bỏ luật sẽ gây tác động xấu đến người sở
hữu vốn và thuận lợi cho những người lao
động phổ thông
ỦNG HỘ CHÍNH TRỊ CÁC CHÍNH
SÁCH THƯƠNG MẠI
• Chính sách thương mại có thể ảnh hưởng đến
thu nhập của nhiều yếu tố sản xuất
• Tại Mỹ, xuất khẩu có xu hướng sử dụng nhiều
lao động có kỹ năng trong khi nhập khẩu lại
có xu hướng các hàng hoá sử dụng lao động
không có kỹ năng
– Chính sách thương mại tự do sẽ đem đến kết quả
tăng tiền công của lao động có kỹ năng và giảm
tiền công lao động không có kỹ năng
Sự tồn tại của giá cân bằng tổng thể
• Đầu thế kỷ 19th, theo điều tra của nhà kinh tế
Leon Walras đã xác định có sự tồn tại của
nhiều tập hợp giá cân bằng đồng thời trên
mọi thị trường
– Nếu tập hợp giá tồn tại, nó được phát hiện ra như
thế nào?
Sự tồn tại của giá cân bằng tổng thể
• Giả sử có n hàng hoá với cung cố định trong
nền kinh tế
– Cho Si (i =1,,n) là tổng cung hàng hoá i
– Cho Pi (i =1,n) là giá hàng hoá i
• Tổng cầu hàng hoá i phụ thuộc vào mọi mức
giá
Di (P1,,Pn) với i =1,,n
Sự tồn tại của giá cân bằng tổng thể
• Viết hàm cầu nếu phụ thuộc vào toàn bộ tập
hợp các mức giá (P)
Di (P)
• Bài toán của Walras: liệu có sự tồn tại tập hợp
giá cân bằng như sau
Di (P*) = Si
đối với mọi giá trị của i ?
Hàm dư cầu
• Hàm dư cầu đối với bất cứ hàng hoá i nào
tại bất cứ tập hợp giá (P) nào được xác
định:
EDi (P) = Di (P) – Si
• Tức là điều kiện cân bằng có thể viết lại như
sau:
EDi (P*) = Di (P*) – Si = 0
Hàm dư cầu
• Lưu ý: hàm dư cầu là hàm thuần nhất bậc
không
– Chúng ta chỉ có thể thiết lập các mức giá cân
cân bằng theo mô hình Walras
• Walras giả định rằng các hàm cầu (và các
hàm dư cầu) diễn ra liên tục
– Một sự thay đổi nhỏ của giá gây ra một sự thay
đổi nhỏ trong lượng cầu
Quy luật Walras
• Quan sát cuối cùng Walras xác định có n
phương trình dư cầu phụ thuộc lẫn nhau
• Quy luật Walras thể hiện tổng giá trị dư cầu
bằng không tại bất cứ tập hợp giá nào
n
i
ii PEDP
1
0)(
Quy luật Walras
• Quy luật Walras đúng đối với bất cứ tập hợp
giá nào (không chỉ với mức giá cân bằng)
• Không phải dư cầu mọi hàng hoá mà cũng
không phải dư cung
Chứng minh của Walras về sự tồn tại các
mức giá cân bằng
• Các điều kiện thị trường cung cấp (n-1)
phương trình độc lập nhau trong (n-1) mức
giá chưa biết
– Có thể giải các phương trình để xác định điều
kiện cân bằng?
• Các phương trình chưa chắc là tuyến tính
• Mọi mức giá phải không âm
• Để giải quyết các khó khăn đó, Walras đưa ra
chúng minh rất phức tạp
Chứng minh của Walras về sự tồn tại các
mức giá cân bằng
• Bắt đầu với bất kỳ tập hợp giá nào
• Giữ n-1 mức giá khác không đổi, tìm giá cân
bằng cho hàng hoá 1 (P1’)
• Giữ P1’ và n-2 mức giá khác không đổi, tìm
giá cân bằng cho hàng hoá 2 (P2’)
– Với thay đổi P2 ban đầu lên P2’, giá tính toán
cho hàng hoá 1 không còn là giá cân bằng nữa
Chứng minh của Walras về sự tồn tại các
mức giá cân bằng
• Sử dụng các mức giá tạm thời P1’ và P2’, tìm
giá P3’
– Tiếp tục theo cách đó đến khi toàn bộ các mức
giá liên quan được xác định
• Lặp lại lần thứ 2 chứng minh của Walras,
P2’,,Pn’ giữ không đổi khi mức giá cân
bằng mới tính cho hàng hoá 1
– Tiếp tục theo cách này đến khi toàn bộ các mức
giá được xác định
Chứng minh của Walras về sự tồn tại các
mức giá cân bằng
• Chứng minh của Walras quan trọng là khả
năng giải thích đồng thời bản chất của việc
tìm ra các mức giá cân bằng
• Do quá cồng kềnh, ngày nay nó ít được sử
dụng
• Những công trình gần đây sử dụng những
công cụ tương đối đơn giản từ thuật toán tiến
bộ hơn
Định lý điểm cố định của Brouwer
• Bất cứ ánh xạ liên tục [F(X)] của tập hợp bị
chặn, bị đóng, lồi thì trong bản thân nó có ít
nhất một điểm cố định (X*) như là F(X*) =
X*
Định lý điểm cố định của Brouwer
x
f (x)
1
1
0
Giả sử f(x) là hàm liên tục trong khoảng [0,1] và f(x)
cũng nhận giá trị trong khoảng [0,1]
45
Bất cứ hàm liên tục nào đều phải
đi qua đường 45
Điểm cắt này là “điểm cố định”
do điểm này (x*) nằm trên f
x
*
f (x*)
Định lý điểm cố định của Brouwer
• Phép ánh xạ là quy tắc liên kết các điểm trong
một tập hợp với những điểm trong tập hợp
khác
– Cho X là điểm trong ánh xạ (F)
• ánh xạ liên kết X với một vài điểm Y = F(X)
– Nếu ánh xạ được xác định trong tập hợp con của
không gian n chiều (S), và nếu mọi điểm trong S
được kết hợp (theo quy luật F) với một số điểm
khác trong S, ánh xạ đó được gọi là ánh xạ S
trong bản thân nó
Định lý điểm cố định của Brouwer
• ÁNH XẠ F(X) BỊ CHẶN TRÊN TẬP HỢP X NẾU
XX TỒN TẠI SỐ M>0 SAO CHO |F(X)|M THÌ
GIÁ TRỊ F(X) HỮU HẠN
• ĐỊNH LÝ ĐIỂM CỐ ĐỊNH CỦA BROUWER
TÍNH ĐẾN CÁC LOẠI ÁNH XẠ ỔN ĐỊNH CỦA
CÁC TẬP HỢP
– ĐÓNG (CHÚNG CHỨA ĐỰNG TRONG GIỚI HẠN
CỦA CHÚNG)
– BỊ CHẶN (KHÔNG CHIỀU NÀO CỦA CHÚNG LÀ VÔ
CÙNG LỚN)
Chứng minh sự tồn tại các mức giá
cân bằng
• Do chỉ các mức giá tương đối quan trọng nên
có thể giả định các mức giá được đã được xác
định và tổng mọi mức giá bằng 1
• Như vậy, đối với bất cứ tập hợp giá nào
(P1,,Pn), chúng ta có thể sử dụng giá danh
nghĩa theo công thức sau:
n
i
i
i
i
P
P
P
1
'
Chứng minh sự tồn tại các mức giá
cân bằng
• Các mức giá mới sẽ được giữ giá trị nguyên
gốc với tổng bằng 1
1'
1
n
i
iP
j
i
j
i
P
P
P
P
'
'
• Các mức giá mới sẽ có tổng bằng 1
Chứng minh sự tồn tại các mức giá
cân bằng
• Giả định rằng tập hợp giá khả thi (S) được
bao gồm các số không âm và có tổng bằng 1
– S là tập hợp sẽ áp dụng vào định lý Brouwer
– S bị đóng, bị chặn, và lồi
– Chúng ta cần xác định ánh xạ liên tục của S
trong bản thân nó
Hàng hoá tự do
• Cân bằng không thực sự đòi hỏi dư cầu bằng
không đối với mọi thị trường
• Hàng hoá có thể tồn tại trong đó thị trường
cân bằng tại nơi lượng cung lớn hơn lượng
cầu (dư cầu âm)
– Tất nhiên giá các hàng hoá đó phải bằng không
– “hàng hoá tự do”
Chứng minh sự tồn tại các mức giá
cân bằng
• Các điều kiện cân bằng là:
EDi (P*) = 0 với Pi* > 0
EDi (P*) 0 với Pi* = 0
• Lưu ý rằng tập hợp giá cân bằng vẫn tuân
theo luật Walras
• Để đạt được cân bằng thì giá của các hàng
hoá dư cầu sẽ tăng trong khi giá của các
hàng hoá dư cung sẽ giảm
Chứng minh sự tồn tại các mức giá
cân bằng
• Xác định ánh xạ F(P) cho bất cứ tập hợp giá
danh nghĩa nào (P), như nhân tố thứ i của
F(P) như sau:
F i(P) = Pi + EDi (P)
• ánh xạ trên thể hiện nhiệm vụ cần thiết của
việc tăng hoặc giảm các mức giá thích hợp
Chứng minh sự tồn tại các mức giá
cân bằng
• Hai vấn đề tồn tại cùng ánh xạ
• Thứ nhất, không có gì đảm bảo các mức giá
sẽ không âm
– ánh xạ phải được xác định là:
F i(P) = Max [Pi + EDi (P),0]
– Các mức giá mới xác định bằng ánh xạ phải
dương hoặc bằng không
Chứng minh sự tồn tại các mức giá
cân bằng
• Thứ hai, các mức giá tính toán lại không
thực sự chuẩn
– Tổng của chúng không bằng 1
– Sẽ đơn giản để chuẩn hoá như sau
n
i
i PF
1
1)(
– Chúng ta giả định rằng đã thiết lập tiêu chuẩn
hoá
Chứng minh sự tồn tại các mức giá
cân bằng
• Như vậy, F thỏa mãn các điều kiện định lý
điểm cố định của Brouwer
– Đây là ánh xạ liên tục của tập hợp S trong bản
thân nó
• Tồn tại một điểm (P*) được ánh xạ trong bản
thân nó
• Đối với điểm đó,
Pi* = Max [Pi* + EDi (P*),0] với mọi i
Chứng minh sự tồn tại các mức giá
cân bằng
• Như vậy P* là tập hợp giá cân bằng
– Với Pi* > 0,
Pi* = Pi* + EDi (P*)
EDi (P*) = 0
– Với Pi* = 0,
Pi* + EDi (P*) 0
EDi (P*) 0
Cân bằng tổng thể với 3 hàng hoá
• Một nền kinh tế chỉ sản xuất ba loại kinh loại
quý: (1) bạc, (2) vàng, và (3) bạch kim
– Mỗi loại có sẵn 10 (nghìn) tấn
• Cầu đối với vàng và bạch kim là:
112
1
3
1
2
2 P
P
P
P
D 182
1
3
1
2
3 P
P
P
P
D
Cân bằng tổng thể với 3 hàng hoá
• Cân bằng thị trường vàng và bạch kim đòi
hỏi cung và cầu trên cả hai thị trường bằng
nhau đồng thời
10112
1
3
1
2
P
P
P
P
10182
1
3
1
2
P
P
P
P
Cân bằng tổng thể với 3 hàng hoá
• Giải hệ các phường trình ta có
P2/P1 = 2
P3/P1 = 3
• Tại điểm cân bằng:
– Vàng sẽ có giá gấp đôi bạc
– Bạch kim có giá gấp ba bạc
– Giá của bạch kim gấp 1.5 lần giá vàng
Cân bằng tổng thể với 3 hàng hoá
• Do áp dụng quy luật Walras, ta có:
P1ED1 = – P2ED2 – P3ED3
• Thay thế các hàm dư cầu đối với vàng và bạc
ta có:
3
1
2
3
1
32
2
1
32
1
2
2
11 822 PP
P
P
PP
P
P
PP
P
P
EDP
1
3
1
2
2
1
2
3
2
1
2
2
1 822 P
P
P
P
P
P
P
P
ED
Tiền tệ trong cân bằng tổng thể
• Thị trường cạnh tranh bắt buộc xác định các
mức giá tương đối chứ không phải giá tuyệt
đối
• Để xem xét mức giá tuyệt đối được xác định
như thế nào, chúng ta phải đưa tiền tệ vào
trong mô hình
Tiền tệ trong cân bằng tổng thể
• Tiền tệ cung cấp hai chức năng chủ yếu
trong một nền kinh tế
– Tạo thuận lợi cho các giao dịch thông qua chức
năng trung gian trao đổi
– Hoạt động như giá trị cất trữ nên các hoạt động
kinh tế có thể phân bổ quyết định chi tiêu theo
thời gian
Tiền tệ trong cân bằng tổng thể
• Một trong những chức năng quan trong nhất
của tiền tệ là hoạt động như tiêu chuẩn thanh
toán
• Hệ thống thị trường cạnh tranh của n hàng
hoá có thể đạt được tập hợp giá cân bằng
chung (P1,,Pn)
– Các giá đó là duy nhất theo bội số chung
• Chỉ giá tương đối được xác định
Tiền tệ trong cân bằng tổng thể
• Về nguyên lý, bất cứ hàng hoá (k) nào có thể
được lựa chọn như tiêu chuẩn thanh toán
– Giá của n-1 hàng hoá khác sẽ được quy theo giá
của hàng hoá k
– Giá tương đối của các hàng hoá sẽ không bị ảnh
hưởng bởi sự lựa chọn k
• Xã hội nhìn chung chấp nhận tiền giấy như
tiêu chuẩn thanh toán
Tiền tệ trong cân bằng tổng thể
• Trong nền kinh tế mà tiền được sản xuất ra như
bất