Tóm tắt. Tài nguyên trong môi trường điện toán đám mây được lưu trữ tại nhiều vị trí khác nhau.
Điện toán đám mây cung cấp hạ tầng cho các ứng dụng dưới dạng các nguồn tài nguyên ảo hóa
một cách tự động. Yêu cầu thiết yếu khi lập lịch trên môi trường điện toán đám mây là đưa ra một
phương án ánh xạ các tác vụ tới những tài nguyên tương ứng với những ràng buộc được đưa ra.
Bài báo này trình bày một giải thuật lập lịch động (HPSO*) dựa trên phương pháp PSO để đưa ra
một phương án lập lịch ứng dụng có tính đến chi phí tính toán và chi phí truyền tải dữ liệu. Bài
báo cũng trình bày những kết quả thử nghiệm các giải thuật trên các bộ dữ liệu để thấy được hiệu
quả của giải thuật HPSO*
9 trang |
Chia sẻ: thanhle95 | Lượt xem: 622 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Bài toán lập lịch phân bổ tài nguyên trong môi trường điện toán đám mây, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
JOURNAL OF SCIENCE OF HNUE DOI: 10.18173/2354-1059.2015-0009
Natural Sci. 2015, Vol. 60, No. 4, pp. 62-70
This paper is available online at
Ngày nhận bài: 31/3/2015. Ngày nhận đăng: 20/5/2015.
Tác giả liên lạc: Nguyễn Thị Thùy Liên, địa chỉ e-mail: lienntt@hnue.edu.vn
62
BÀI TOÁN LẬP LỊCH PHÂN BỔ TÀI NGUYÊN
TRONG MÔI TRƯỜNG ĐIỆN TOÁN ĐÁM MÂY
Nguyễn Thị Thùy Liên và Đỗ Như Long
Khoa Công nghệ thông tin, Trường Đại học Sư phạm Hà Nội
Tóm tắt. Tài nguyên trong môi trường điện toán đám mây được lưu trữ tại nhiều vị trí khác nhau.
Điện toán đám mây cung cấp hạ tầng cho các ứng dụng dưới dạng các nguồn tài nguyên ảo hóa
một cách tự động. Yêu cầu thiết yếu khi lập lịch trên môi trường điện toán đám mây là đưa ra một
phương án ánh xạ các tác vụ tới những tài nguyên tương ứng với những ràng buộc được đưa ra.
Bài báo này trình bày một giải thuật lập lịch động (HPSO*) dựa trên phương pháp PSO để đưa ra
một phương án lập lịch ứng dụng có tính đến chi phí tính toán và chi phí truyền tải dữ liệu. Bài
báo cũng trình bày những kết quả thử nghiệm các giải thuật trên các bộ dữ liệu để thấy được hiệu
quả của giải thuật HPSO*.
Từ khóa: Điện toán đám mây, lập lịch công việc, giải thuật lập lịch.
1. Mở đầu
Điện toán đám mây (cloud computing) là mô hình mới cho lĩnh vực tính toán phân tán. Nó cung
cấp hạ tầng nền tảng và các ứng dụng dưới dạng các dịch vụ được tạo sẵn và phục vụ khách hàng theo
phương thức trả phí cho những gì họ sử dụng. Ngoài ra điện toán đám mây còn cung cấp linh hoạt tài
nguyên tính toán dựa theo yêu cầu, lựa chọn vị trí lưu trữ dữ liệu trên toàn cầu. Để đạt được hiệu quả
về tính toán và chi phí bộ lập lịch của đám mây phải có các chiến lược thay đổi theo các hàm mục tiêu
khác nhau: tối thiểu tổng thời gian thực thi, tối thiểu tổng chi phí thực thi, cân bằng tải trên các tài
nguyên Bài báo này tập trung vào chiến lược giảm thiểu hóa tổng chi phí thực thi của ứng dụng trên
các tài nguyên bằng cách sử dụng thuật toán lập lịch động dựa trên giải thuật tối ưu bầy đàn-PSO.
Phần thực nghiệm được tiến hành dựa trên số liệu về dịch vụ đám mây của Amazon và GoGrid.
Lập lịch (scheduling) là vấn đề phát sinh trong rất nhiều lĩnh vực. Vấn đề lập lịch có thể hiểu là
xác định một tập hợp các hoạt động để chia sẻ tài nguyên có giới hạn và cần được xử lí với nhiều hạn
chế (chủ yếu là thời gian và nguồn lực). Theo các định nghĩa của Fox (1994) [1] thì lập lịch là việc
“phân chia các nguồn tài nguyên cho mỗi hoạt động, để các tác vụ tuân theo những hạn chế về thời
gian và giới hạn của tập tài nguyên được chia sẻ”. Thực tế thì có thể không tồn tại một giải pháp lịch
biểu đáp ứng tất cả các hạn chế về thời gian và nguồn lực, nhất là khi việc sử dụng tài nguyên lại gắn
liền với nhiều yêu cầu ràng buộc khác nhau.
Bài toán lập lịch và phân bổ tài nguyên trong môi trường điện toán đám mây (SRAP) nhằm mục
đích tìm ra một phương án tối ưu giảm thiểu tổng chi phí thực hiện các tác vụ (Task) trên các nguồn
tài nguyên bao gồm chi phí tính toán trên tài nguyên, chi phí truyền thông và hoàn thành trong thời
gian do người dùng chỉ định. Một luồng công việc có thể được biểu diễn bởi đồ thị DAG, cho G = (V,
E), với V = {t1, t2, ..., tn} là tập các tác vụ và E là tập các phụ thuộc dữ liệu giữa các tác vụ này, fj,k =
(Tj, Tk) E là tập tin đầu ra của Tj và là tập tin đầu vào của Tk. Một tập của các máy chủ lưu trữ S =
{1, ...,i}, một tập các máy tính tính toán H = {1, ..., j} và một tập số các tác vụ T = { 1, ..., k} [2].
Với những giả thiết của bài toán:
Bài toán lập lịch phân bổ tài nguyên trong môi trường điện toán đám mây
63
Thời gian tính toán của tác vụ Tk trên nguồn tài nguyên tính toán Hj được giả sử là đã biết. Chi
phí tính toán của một tác vụ trên một H tỉ lệ nghịch với thời gian tính toán. Chi phí truy cập dữ liệu di, j
từ một nguồn Hi đến Hj được giả sử là đã biết (trong thực tế chi phí truy cập được ấn định bởi nhà
cung cấp dịch vụ). Chi phí truyền thông được tính theo kích thước khối dữ liệu truyền giữa các nơi lưu
trữ và không có phụ thuộc vào thời gian. Giả định rằng các chi phí này là không âm, đối xứng và đáp
ứng các bất đẳng thức tam giác: di, j = dj, i với mọi i, j N, và di,j+dj, k ≥ di, k với mọi i, j, k N.
Mục tiêu của bài toán là: “Tìm phương án lập lịch M sao cho chi phí thực thi là tối thiểu”
Gọi Cexe(M)j là tổng chi phí của tất cả các nhiệm vụ được giao cho một nguồn tài nguyên tính
toán Hj theo phương án M [2].
jkMMC
k
kjjexe )()(
với kj
là trọng số của các nút (là chi phí thực hiện của một nhiệm vụ k trên tài nguyên tính toán
Hj).Ký hiệu Ctx(M)j là tổng chi phí truy cập (bao gồm cả chi phí truyền thông) giữa các tác vụ được
giao cho một Hj thực thi trong phương án M.
2,1
1 2
)2(),1()( kk
Tk Tk
kMkMjtx edMC
jkMvàjkM )2()1(
trong đó: ek1,k2 là kích thước tập tin đầu ra giữa hai nhiệm vụ k1 và k2 k; M (k1) là nhiệm vụ k1 được
thực thi trên Hj theo phương án M; M (k2) là nhiệm vụ k2 không được thực thi trên Hj theo phương án
M; dM(k1),M(k2) là chi phí truyền thông trung bình của các đơn vị dữ liệu giữa hai Host. Các chi phí
truyền thông được áp dụng chỉ khi hai tác vụ có tập tin phụ thuộc giữa chúng, tức là ek1,k2 > 0. Đối với
các tác vụ thực hiện trên cùng một tài nguyên thì chi phí truyền thông là 0.
Gọi Ctotal(M)j là tổng chi phí của Hj bao gồm tổng chi phí thực thi và chi phí truy cập.
jtxjexejtotal MCMCMC )()()(
Kí hiệu Cost(M) là tổng tất cả các chi phí của các H trong phương án lập lịch
))(max()( jtotal MCostMCost
Mục tiêu của bài toán là tìm ra phương án M có chi phí thấp nhất
2. Nội dung nghiên cứu
2.1. Giải thuật Particle Swarm Optimization (PSO)
Tối ưu bầy đàn (Partical Swarm Optimization – PSO) là một kĩ thuật tối ưu dựa theo mô hình
hành vi xã hội ở động vật hoặc côn trùng, PSO được giới thiệu vào năm 1995 tại một hội nghị của
IEEE bởi James Kenedy và kỹ sư Russell C.Eberhart [3]. Giải thuật tối ưu hóa bầy đàn (PSO) lấy ý
tưởng từ hành vi xã hội của bầy đàn trong tự nhiên như đàn chim tìm thức ăn hay đàn cá tự bảo vệ
mình khỏi kẻ thù. Mỗi các thể trong PSO tương tự như một con chim hay ong bay trong không giam
tìm kiếm. Mỗi cá thể có một vận tốc ban đầu và giữa các cá thể có kênh liên lạc với nhau. Sự chuyển
động của mỗi cá thể là sự phối hợp của vận tốc bao gồm cả mức độ và hướng. Mỗi vị trí của các thể
chịu ảnh hưởng bởi vị trí tốt nhất của mình và vị trí tốt nhất của không gian lời giải. Các cá thể được
đánh giá bằng một hay nhiều tiêu chuẩn thích nghi (giá trị thích nghi - fitness). Dần dần các cá thể sẽ
di chuyển về phía những cá thể đang ở vị trí tốt hơn trong bày đàn.
Tương tự như các giải thuật tiến hóa khác, trong PSO, quần thể là tập hợp các cá thể hoạt động
trong không gian tìm kiếm – còn gọi là bầy đàn. Ban đầu tất cả các cá thể đều được sinh ngẫu nhiên.
Mỗi cá thể được đặc trưng bởi một giá trị thích nghi (fitness) được tính toán dựa trên hàm đo độ thích
nghi. PSO tìm phương án tối ưu bằng cách cập nhật cá thể thông qua các thế hệ. Trong mỗi thế hệ,
từng cá thể được cập nhật theo hai giá trị. Giá trị thứ nhất là vị trí tốt nhất đạt được cho tới thời điểm hiện
tại của cá thể đó ký hiệu là pbest. Giá trị thứ hai là vị trí tối ưu toàn cục của cả bầy đàn ký hiệu là gbest.
vik+1 = w.vki+c1 . rand1().(pbesti – xik) + c2.rand2().(gbest – xik)
xik+1 = xit + vk+1i (vk=0i = 0)
Min (Cost (M)) M
Nguyễn Thị Thùy Liên và Đỗ Như Long
64
trong đó:
xik, vik: vector vị trí, vector vận tốc cá thể thứ i tại thế hệ thứ k
xik+1, vik+1: vector vị trí, vector vận tốc cá thể thứ i tại thế hệ thứ k + 1
pbesti: Vị trí tốt nhất của cá thể thứ i cho đến thời điểm hiện tại
gbesti: Vị trí tốt nhất của quần thể cho đến thời điểm hiện tại.
w : trọng số quán tính
c1, c2 : các tham số học hoặc hệ số gia tốc đặc trưng cho kinh nghiệm và tính xã hội của các cá thể
trong quần thể (có thể lấy c1≈c2≈ 2 hoặc c1 + c2 ≤ 4)
rand1, rand2 : hai vector ngẫu nhiên mỗi thành phần lấy giữa 0 và 1 được sinh ra tại mỗi bước lặp.
Mã hóa cá thể
Bài toán lập lịch được biểu diễn dưới dạng đồ thị DAG trong đó mỗi nút tương ứng với một
nhiệm vụ, mỗi cạnh tương ứng với một mỗi liên hệ cha-con giữa hai nhiệm vụ . Số chiều của cá thể d
bằng số tác vụ n [4]. Giá trị của mỗi chiều trong cá thể đại diện cho một tài nguyên tương ứng. Trong
quá trình tìm kiếm, các giá trị của mỗi chiều của cá thể trong hệ thống tài nguyên thay đổi và tái xây
dựng một cá thể mới sau khi tiến hóa theo vị trí mới của mỗi chiều. Ví dụ hình dưới xây dựng một cá
thể. Cá thể có 10 chiều đại diện cho 10 tác vụ, giá trị của mỗi chiều đại diện cho tài nguyên được lựa
chọn để thực hiện tác vụ đó.
Mã hóa cá thể tương ứng
2.2. Giải thuật Heuristic dựa trên PSO (HPSO)
Giải thuật lập lịch động dựa PSO thực hiện tìm kiếm và đưa ra phương án ánh xạ tác vụ - tài
nguyên với chi phí gần tối ưu dựa trên giải thuật tối ưu bầy đàn. Quá trình tìm phương án tối ưu được
thực hiện qua 2 bước:
- Bước 1. Sheduling heuristic: Chi phí tính toán của tất cả các tác vụ trên tất cả các tài nguyên
tính toán được tính bằng chi phí thực hiện của mỗi tác vụ trên từng tài nguyên.
Hình 1. Giải thuật Scheduling heuristic
Task 1 2 3 4 5 6 7 8 9 10
Host 2 3 1 0 3 5 4 6 2 5
Partical 2 3 1 0 3 5 4 6 2 5
Giải thuật Scheduling heuristic
1. Tính toán chi phí thực thi trung bình của tất cả các tác vụ trên tất cả các tài nguyên
2. Tính toán chi phí truyền thông dữ liệu giữa các nguồn tài nguyên
3. Thiết lập trọng số các nút wkj là chi phí tính toán trung bình
4. Thiết lập trọng số cạnh ek1,k2 là kích thước của dữ liệu truyền giữa các tác vụ
5. Tính PSO({ti}) /* tập các tác vụ i ϵ k*/
6. repeat
7. for tất cả các tác vụ “ready” {ti} T do
8. Gán tác vụ {ti} cho tài nguyên {hj} dựa theo kết quả thực thi PSO
9. endfor
10. Gửi tất cả tác vụ đã được lập lịch
11. Đợi polling_time
12. Cập nhật danh sách các tác vụ ready
13. Cập nhật chi phí truyền thông trung bình giữa các tài nguyên dựa theo hiện trạng của
mạng hiện tại.
14. Tính PSO({ti})
15. until không có tác vụ nào chưa được lập lịch
Bài toán lập lịch phân bổ tài nguyên trong môi trường điện toán đám mây
65
Hình 2. Giải thuật PSO
- Bước 2. PSO Giải thuật lập lịch động dựa PSO là động (online) vì nó cập nhật chi phí truyền
thông dựa trên chi phí truyền thông giữa các tài nguyên) trong mỗi vòng lặp. Giải thuật cũng tái ánh xạ
task-resource vì vậy giúp tối ưu chi phí tính toán dựa trên trạng thái tài nguyên và mạng hiện tại.
2.3. Giải thuật Heuristic dựa trên PSO * (HPSO*)
HPSO* cung cấp một phương án ánh xạ các tác vụ với một tập các tài nguyên thông qua hai
bước: sử dụng giải thuật Scheduling Heuristic và sử dụng biến thể PSO như Hình 3.
Hình 3. Giải thuật PSO*
Giải thuật PSO
1. Thiết lập số chiều cá thể bằng kích thước của tập các tác vụ sẵn sàng {ti} T
2. Khởi tạo các cá thể với vị trí ngẫu nhiên {1,host_numbers}và vận tốc ngẫu
nhiên [0,1]
3. For each cá thể p,
4. Tính giá trị thích nghi fitness
5. Nếu giá trị thích nghi fitness của cá thể hiện tại tốt hơn Pbest tốt nhất
trước đó, thiết lập lại giá trị Pbest bằng giá trị mới.
6. End for
7. Chọn cá thể tốt nhất coi là Gbest
8. Tính toán vận tốc và cập nhật lại vị trí đối với từng cá thể
Giải thuật PSO*
1. Thiết lập số chiều cá thể bằng kích thước của tập các tác vụ sẵn sàng {ti} T
2. Khởi tạo các cá thể với vị trí ngẫu nhiên {1,host_numbers}và vận tốc ngẫu nhiên
[0,1]
3. For each cá thể p,
4. Tính giá trị thích nghi fitness
5. Nếu giá trị thích nghi fitness của cá thể hiện tại tốt hơn Pbest tốt nhất trước
đó, thiết lập lại giá trị Pbest bằng giá trị mới.
6. End for
7. Chọn cá thể tốt nhất coi là Gbest
8. Repeat
a. Chọn ngẫu nhiên m = [log2(n)] chiều từ vector vị trí n chiều của cá thể
gbest và trao đổi giá trị của chúng theo từng cặp
b. Tính lại giá trị fitness của gbest*
c. Cập nhật gbest* làm gbest nếu gbest* có fitness tốt hơn
Until thỏa điều kiện dừng hoặc số lần lặp tối đa
9. Tính toán vận tốc và cập nhật lại vị trí đối với từng cá thể
10. Nếu các điều kiện dừng và số lần lặp tối đa chưa đáp ứng lặp lại bước 3
Nguyễn Thị Thùy Liên và Đỗ Như Long
66
2.4. Thực nghiệm và nhận xét
2.4.1. Kết quả thực nghiệm
Thực nghiệm chọn thông số
Thực nghiệm chọn thông số m cặp giá trị ngẫu nhiên từ vector vị trí của cá thể gbest để trao đổi
giá trị của chúng trong giải thuật PSO* bằng thực nghiệm trên 10 bộ dữ liệu. Thực nghiệm 5 lần trên
từng bộ dữ liệu và lấy giá trị trung bình tương ứng với mỗi giá trị m chạy từ 1 đến 5 như Bảng 1. Qua
so sánh kết quả thực nghiệm, nhận thấy với các bộ dữ liệu có số tác vụ khác nhau có sự phù hợp khác
nhau với các giá trị của thông số m, tác giả tiến hành chọn thông số m = [log2(n/2)] áp dụng cho giải
thuật PSO* trong đó n là số tác vụ. Biểu đồ so sánh tổng chi phí thực hiện trên các bộ dữ liệu ứng với
các giá trị khác nhau của thông số n được biểu diễn trong Hình 4.
Bảng 1 Thực nghiệm chọn thông số m – số cặp giá trị trao đổi ngẫu nhiên
của vector vị trí Gbest trong giải thuật PSO*
Hình 4. Biểu đồ so sánh tổng chi phí thực hiện trên các bộ dữ liệu
với giá trị thông số m thay đổi
Tiến hành thử nghiệm các giải thuật trên 6 tài nguyên tính toán 10 bộ dữ liệu trong đó, bộ dữ liệu
thử nghiệm số 1 gồm 5 tác vụ được lấy từ bài báo của tác giả Suraj Pandey, Linlin Wu [4], bộ dữ liệu
số 3 gồm 53 tác vụ (AIRSN workflow, Hình 5), bộ dữ liệu số 4,5 gồm 44 và 124 tác vụ (Chimera
workflow, Hình 5- các bộ dữ liệu thử nghiệm số 6, 7, 8, 9, 10 được sinh ngẫu
nhiên từ bộ sinh dữ liệu Montage (Montage:
Stt bộ dữ liệu 1 2 3 4 5 6 7 8 9 10
Số tác vụ (n) 5 8 53 44 124 16 25 77 81 42 m
1 35,1 138,1 44,1 139,9 44,1 6,2 19,4 58,2 244,4 54,7
2 36,6 264,5 30,9 79,6 39,0 6,3 16,2 83,2 212,2 47,4
3 36,6 131,6 29,1 80,8 35,8 5,8 10,4 85,7 219,4 56,3
4 39,1 215,1 33,8 90,8 40,5 4,9 16,4 80,9 174,4 51,1
5 40,1 209,7 42,8 77,4 35,5 6,8 13,5 62,0 224,2 59,7
[log2(n)/2] 35,1 138,1 30,9 79,6 35,8 6,3 16,2 85,7 219,4 47,4
Bài toán lập lịch phân bổ tài nguyên trong môi trường điện toán đám mây
67
AIRSN 53 (3) Chimera 124(5)
Hình 5. AIRSN và Chimera workflow được sử dụng trong thực nghiệm
Bài toán SRAP có tổng chi phí được tính là tổng của chi phí thực thi các tác vụ trên các tài
nguyên và tổng chi phí truyền thông giữa các tác vụ. Như vậy, tổng chi phí của bài toán SRAP phụ
thuộc khá lớn vào chi phí truyền thông, trong khi đó, với môi trường điện toán đám mây các tài
nguyên có thể ở khắp mọi nơi trên thế giới với cơ sở hạ tầng mạng rất khác nhau ảnh hưởng không
nhỏ đến chi phí truyền thông. Vì vậy tác giả tiến hành thực nghiệm 30 lần và lấy kết quả trung bình
trên mỗi bộ dữ liệu ứng với 3 trường hợp: chi phí truyền thông không đáng kể (đặc trưng cho cơ sở hạ
tầng mạng rất tốt), chi phí truyền thông trung bình (đặc trưng cho cơ sở hạ tầng, đường truyền mức
trung bình), chi phí truyền thông đáng kể (đặc trưng cho cơ sở hạ tầng, đường truyền mạng rất kém).
Kết quả thử nghiệm được tổng hợp trong Bảng 2.
Bảng 2. Tổng hợp kết quả thử nghiệm (chi phí) trên các bộ dữ liệu ứng với các trường hợp chi phí
truyền thông rất nhỏ, chi phí truyền thông trung bình và chi phí truyền thông đáng kể
Bộ
dữ
liệu
Số
tác
vụ
n
Chi phí truyền thông nhỏ Chi phí truyền thông trung bình Chi phí truyền thông đáng kể
Ran
dom
Round
Robin
P
S
O
H
P
S
O
H
P
S
O*
Ran
dom
Round
Robin
P
S
O
H
P
S
O
H
P
S
O*
Ran
dom
Round
Robin
P
S
O
H
P
S
O
H
P
S
O*
1 5 34,2 35,0 32,92 18,32 18,32 31,247 35,0 35,047 18,48 18,8 31,25 35,0 45,33 18,09 17,85
2 8 72,76 50,0 60,59 27,69 28,10 57,543 50,0 60,923 27,52 27,69 58,05 50,0 92,8 27,02 29,77
3 53 3,193 2,843 3,378 0,788 0,539 72,77 78,778 34,816 15,19 21,07 779,8 798,98 646,1 560 675
4 44 1,914 2,532 2,007 0,619 0,515 228,75 234,3 89,21 46,62 32,77 2577 2629 2249,88 2222 2124
5 124 47924 61510 68872 16274 12855 47272 61762 6484 17334 13068 47831 64394 63343 19985 18796
6 16 1,020 3,012 0,672 0,122 0,094 12,352 13,738 5,922 3,672 3,425 125,2 134,4 97,28 84,12 79,43
7 25 1,254 1,414 1,346 0,315 0,242 45,19 46,06 13,772 13,59 11,18 504,6 500 379,4 402,7 412,9
8 77 3,196 3,354 4,109 0,989 0,800 110,5 115,36 54,243 38,51 40,785 1214 1229,3 1080 994,5 1016,7
9 81 3,604 3,029 4,861 1,148 0,915 381,1 369,8 164,83 117,9 85,37 4318 4252 3755, 3760,9 3400,78
10 42 1,682 1,330 1,659 0,594 0,442 121,442 124,08 44,49 22,85 13,799 1369, 1359,9 1048 947,8 974,1
Nguyễn Thị Thùy Liên và Đỗ Như Long
68
Nhận thấy giải thuật PSO ứng dụng giải bài toán lập lịch cho kết quả không tốt hơn hai giải thuật
khá phố biến là Random và RoundRobin trong trường hợp chi phí truyền thông rất nhỏ (Hình 6). Khi
chi phí truyền thông nhỏ, không đáng kể thì tổng chi phí của bài toán xấp xỉ bằng tổng chi phí tính
toán các tác vụ trên các tài nguyên trong khi đó giải thuật PSO có tính toán đến chi phí truyền thông
không phát huy hết ưu điểm của mình. Khi chi phí truyền thông tăng lên, kết quả thử nghiệm cho thấy
giải thuật PSO cho kết quả tốt hơn hẳn hai giải thuật Random và RoundRobin (Hình 7). Qua Bảng 3, 4
chúng tôi nhận thấy giải thuật HPSO và HPSO* có mức độ giảm tổng chi phí rất lớn so với giải thuật
PSO khi chi phí truyền thông còn tương đối nhỏ.
Bảng 3. So sánh chi phí thử nghiệm giữa các giải thuật HPSO so với PSO, HPSO*
so với PSO và HPSO trên các bộ dữ liệu (đơn vị %) với chi phí truyền thông rất nhỏ
Hình 6. So sánh tổng chi phí giữa các giải thuật PSO, HPSO và HPSO*
với chi phí truyền thông rất nhỏ
Tuy nhiên khi chi phí truyền thông trở lên rất lớn (đặc trưng cho hạ tầng mạng rất kém) thì mức
độ giảm tổng chi phí của hai giải thuật HPSO và HPSO* không thực sự cao so với giải thuật PSO
(Bảng 5, Hình 8) vì chi phí truyền thông rất lớn kéo theo tỉ trọng chi phí truyền thông trong tổng chi
phí của bài toán rất lớn (mức chi phí truyền thông gần như rất khó có thể giảm nhiều).
Bộ dữ liệu Số tác vụ HPSO HPSO* (PSO) (PSO) (HPSO)
1 5 -44.34 -44.34 0
2 8 -54.30 -53.62 +1.46
3 53 -76.69 -84.06 -31.61
4 44 -69.13 -74.32 -16.
5 124 -76.31 -81.31 -21.13
6 16 -81.89 -86.08 -23.13
7 25 -76.58 -82.03 -23.27
8 77 -75.90 -80.54 -19.22
9 81 -76.38 -81.18 -20.30
10 42 -64.16 -73.36 -25.61
Bài toán lập lịch phân bổ tài nguyên trong môi trường điện toán đám mây
69
Bảng 4. So sánh chi phí thử nghiệm giữa
các giải thuật HPSO với PSO, HPSO* với PSO
và HPSO trên các bộ dữ liệu (đơn vị %)
với chi phí truyền thông trung bình
Bộ
dữ
liệu
Số
tác
vụ
HPSO HPSO*
(PSO) (PSO) (HPSO)
1 5 -56.37 -39.48 +38.72
2 8 -47.74 -63.26 -29.70
3 53 -73.16 -79.77 -24.61
4 44 -38.00 42.17 -6. 2
5 124 - .31 -18.79 -17. 1
6 16 -29.00 -24.81 5.90
7 25 -28.45 -48.21 -27.61
8 77 -48.65 -68.99 -39.60
9 81 -47.27 -46.36 +1.73
10 42 -54.83 -54.54 +0.63
Hình 7. So sánh tổng chi phí giữa các giải thuật PSO,
HPSO và HPSO* có chi phí truyền thông trung bình
Bảng 5. So sánh chi phí thử nghiệm giữa các giải
thuật HPSO với PSO, HPSO* với PSO và HPSO
trên các bộ dữ liệu (đơn vị %)
với chi phí truyền thông đáng kể
Bộ
dữ
liệu
Số
tác
vụ
HPSO HPSO*
(PSO) (PSO) (HPSO)
1 5 -13. 3 +4.47 +20.5
2 8 -1 22 -5. -4.42
3 53 -72.14 -73.80 -5.95
4 4
-
1 .54 -18.35 -5.57
5 124 +6.14 +8.83 +2.53
6 16 -7.96 -5.93 +2.21
7 25 +0.13 -9.45 -9.57
8 77 -9.55 -7.04 +2.78
9 81 -60.10 -60.63 -1.33
10 42 -70.88 -67.92 +10.17
Hình 8. So sánh tổng chi phí giữa các giải thuật
PSO, HPSO và HPSO* có chi phí
truyền thông trung bình
3. Kết luận
Bài báo trình bày trình bày một giải thuật lập lịch động dựa trên phương pháp tối ưu bầy đàn
(PSO) nhằm mục đích tối thiểu tổng chi phí thực thi của ứng dụng luồng công việc trong môi trường
điện toán đám mây. Bài báo cũng trình bày một biến thể của giải thuật PSO là