Lập trình Socket cho giao thức TCP

Mô hình được phổ biến nhất và được chấp nhận rộng rãi trong các hệ thống phân tán là mô hình client/server. Trong mô hình này sẽ có một tập các tiến trình mà mỗi tiến trình đóng vai trò như là một trình quản lý tài nguyên cho một tập hợp các tài nguyên cho trước và một tập hợp các tiến trình client trong đó mỗi tiến trình thực hiện một tác vụ nào đó cần truy xuất tới tài nguyên phần cứng hoặc phần mềm dùng chung. Bản thân các trình quản lý tài nguyên cần phải truy xuất tới các tài nguyên dùng chung được quản lý bởi một tiến trình khác, vì vậy một số tiến trình vừa là tiến trình client vừa là tiến trình server. Các tiến trình phát ra các yêu cầu tới các server bất kỳ khi nào chúng cần truy xuất tới một trong các tài nguyên của các server. Nếu yêu cầu là đúng đắn thì server sẽ thực hiện hành động được yêu cầu và gửi một đáp ứng trả lời tới tiến trình client.

doc23 trang | Chia sẻ: haohao89 | Lượt xem: 3114 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Lập trình Socket cho giao thức TCP, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Chương 6 Lập trình Socket cho giao thức TCP 1. Mô hình client/server Mô hình được phổ biến nhất và được chấp nhận rộng rãi trong các hệ thống phân tán là mô hình client/server. Trong mô hình này sẽ có một tập các tiến trình mà mỗi tiến trình đóng vai trò như là một trình quản lý tài nguyên cho một tập hợp các tài nguyên cho trước và một tập hợp các tiến trình client trong đó mỗi tiến trình thực hiện một tác vụ nào đó cần truy xuất tới tài nguyên phần cứng hoặc phần mềm dùng chung. Bản thân các trình quản lý tài nguyên cần phải truy xuất tới các tài nguyên dùng chung được quản lý bởi một tiến trình khác, vì vậy một số tiến trình vừa là tiến trình client vừa là tiến trình server. Các tiến trình phát ra các yêu cầu tới các server bất kỳ khi nào chúng cần truy xuất tới một trong các tài nguyên của các server. Nếu yêu cầu là đúng đắn thì server sẽ thực hiện hành động được yêu cầu và gửi một đáp ứng trả lời tới tiến trình client. Mô hình client/server cung cấp một cách tiếp cận tổng quát để chia sẻ tài nguyên trong các hệ thống phân tán. Mô hình này có thể được cài đặt bằng rất nhiều môi trường phần cứng và phần mềm khác nhau. Các máy tính được sử dụng để chạy các tiến trình client/server có nhiều kiểu khác nhau và không cần thiết phải phân biệt giữa chúng; cả tiến trình client và tiến trình server đều có thể chạy trên cùng một máy tính. Một tiến trình server có thể sử dụng dịch vụ của một server khác. Mô hình truyền tin client/server hướng tới việc cung cấp dịch vụ. Quá trình trao đổi dữ liệu bao gồm: 1. Truyền một yêu cầu từ tiến trình client tới tiến trình server 2. Yêu cầu được server xử lý 3. Truyền đáp ứng cho client Mô hình truyền tin này liên quan đến việc truyền hai thông điệp và một dạng đồng bộ hóa cụ thể giữa client và server. Tiến trình server phải nhận thức được thông điệp được yêu cầu ở bước một ngay khi nó đến và hành động phát ra yêu cầu trong client phải được tạm dừng (bị phong tỏa) và buộc tiến trình client ở trạng thái chờ cho tớ khi nó nhận được đáp ứng do server gửi về ở bước ba. Mô hình client/server thường được cài đặt dựa trên các thao tác cơ bản là gửi (send) và nhận (receive). Tiến trình đang phong tỏa Tiến trình đang xử lý Request message Request message Reply Execution Wait Server Client Hình 4.1 Quá trình giao tiếp client và server có thể diễn ra theo một t rong hai chế độ: bị phong tỏa (blocked) và không bị phong tỏa (non-blocked). Chế độ bị phong tỏa (blocked): Trong chế độ bị phong tỏa, khi tiến trình client hoặc server phát ra lệnh gửi dữ liệu (send), việc thực thi của tiến trình sẽ bị tạm ngừng cho tới khi tiến trình nhận phát ra lệnh nhận dữ liệu (receive). Tương tự đối với tiến trình nhận dữ liệu, nếu tiến trình nào đó (client hoặc server) phát ra lệnh nhận dữ liệu, mà tại thời điểm đó chưa có dữ liệu gửi tới thì việc thực thi của tiến trình cũng sẽ bị tạm ngừng cho tới khi có dữ liệu gửi tới. Chế độ không bị phong tỏa (non-blocked) Trong chế độ này, khi tiến trình client hay server phát ra lệnh gửi dữ liệu thực sự, việc thực thi của tiến trình vẫn được tiến hành mà không quan tâm đến việc có tiến trình nào phát ra lệnh nhận dữ liệu đó hay không. Tương tự cho trường hợp nhận dữ liệu, khi tiến trình phát ra lệnh nhận dữ liệu, nó sẽ nhận dữ liệu hiện có, việc thực thi của tiến trình vẫn được tiến hành mà không quan tâm đến việc có tiến trình nào phát ra lệnh gửi dữ liệu tiếp theo hay không. 2. Các kiến trúc Client/Server 2.1. Client/Server hai tầng (two-tier client/server) Kiến trúc client/server đơn giản nhất là kiến trúc hai tầng. Trong thực tế hầu hết các kiến trúc client/server là kiến trúc hai tầng. Một ứng dụng hai tầng cung cấp nhiều trạm làm việc với một tầng trình diễn thống nhất, tầng này truyền tin với tầng lưu trữ dữ liệu tập trung. Tầng trình diễn thông thường là client, và tầng lưu trữ dữ liệu là server. Hầu hết các ứng dụng Internet như là email, telnet, ftp thậm chí là cả Web là các ứng dụng hai tầng. Phần lớn các lập trình viên trình ứng dụng viết các ứng dụng client/server có xu thế sử dụng kiến trúc này. Trong ứng dụng hai tầng truyền thống, khối lượng công việc xử lý được dành cho phía client trong khi server chỉ đơn giản đóng vai trò như là chương trình kiểm soát luồng vào ra giữa ứng dụng và dữ liệu. Kết quả là không chỉ hiệu năng của ứng dụng bị giảm đi do tài nguyên hạn chế của PC, mà khối lượng dữ liệu truyền đi trên mạng cũng tăng theo. Khi toàn bộ ứng dụng được xử lý trên một PC, ứng dụng bắt buộc phải yêu cầu nhiều dữ liệu trước khi đưa ra bất kỳ kết quả xử lý nào cho người dùng. Nhiều yêu cầu dữ liệu cũng làm giảm hiệu năng của mạng. Một vấn đề thường gặp khác đối với ứng dụng hai tầng là vấn đề bảo trì. Chỉ cần một thay đổi nhỏ đối với ứng dụng cũng cần phải thay đổi lại toàn bộ ứng dụng client và server. Hình 4.2 2.2. Client/Server ba tầng Ta có thể tránh được các vấn đề của kiến trúc client/server hai tầng bằng cách mở rộng kiến trúc thành ba tầng. Một kiến trúc ba tầng có thêm một tầng mới tác biệt việc xử lý dữ liệu ở vị trí trung tâm. Hình 4.3 Theo kiến trúc ba tầng, một ứng dụng được chia thành ba tầng tách biệt nhau về mặt logic. Tầng đầu tiên là tầng trình diễn thường bao gồm các giao diện đồ họa. Tầng thứ hai, còn được gọi là tầng trung gian hay tầng tác nghiệp. Tầng thứ ba chứa dữ liệu cần cho ứng dụng. Tầng thứ ba về cơ bản là chương trình thực hiện các lời gọi hàm để tìm kiếm dữ liệu cần thiết. Tầng trình diễn nhận dữ liệu và định dạng nó để hiển thị. Sự tách biệt giữa chức năng xử lý với giao diện đã tạo nên sự linh hoạt cho việc thiết kế ứng dụng. Nhiều giao diện người dùng được xây dựng và triển khai mà không làm thay đổi logic ứng dụng. Tầng thứ ba chứa dữ liệu cần thiết cho ứng dụng. Dữ liệu này có thể bao gồm bất kỳ nguồn thông tin nào, bao gồm cơ sở dữ liệu như Oracale, SQL Server hoặc tài liệu XML. 2.3. Kiến trúc n-tầng Kiến trúc n-tầng được chia thành các tầng như sau: Tầng giao diện người dùng: quản lý tương tác của người dùng với ứng dụng Tầng logic trình diễn: Xác định cách thức hiển thị giao diện người dùng và các yêu cầu của người dùng được quản lý như thế nào. Tầng logic tác nghiệp: Mô hình hóa các quy tắc tác nghiệp, Tầng các dịch vụ hạ tầng: Cung cấp một chức năng bổ trợ cần thiết cho ứng dụng như các thành phần (truyền thông điệp, hỗ trợ giao tác). 3. Mô hình truyền tin socket 6 Socket() Bind() Listen() Accept() Các chức năng gửi và nhận Close() Socket() Bind() Connect() Các chức năng gửi và nhận Close() 1 3 4 5 7 2 Server Client Hình 4.4 Khi lập trình, ta cần quan tâm đến chế độ bị phong tỏa, vì nó có thể dẫn đến tình huống một tiến trình nào đó sẽ rơi vào vòng lặp vô hạn của quá trình gửi hoặc nhận. Trong chương 1 chúng ta đã biết hai giao thức TCP và UDP là các giao thức tầng giao vận để truyền dữ liệu. Mỗi giao thức có những ưu và nhược điểm riêng. Chẳng hạn, giao thức TCP có độ tin cậy truyền tin cao, nhưng tốc độ truyền tin bị hạn chế do phải có giai đoạn thiết lập và giải phóng liên kết khi truyền tin, khi gói tin có lỗi hay bị thất lạc thì giao thức TCP phải có trách nhiệm truyền lại,…Ngược lại, giao thức UDP có tốc độ truyền tin rất nhanh vì nó chỉ có một cơ chế truyền tin rất đơn giản: không cần phải thiết lập và giải phóng liên kết. Khi lập trình cho TCP ta sử dụng các socket luồng, còn đối với giao thức UDP ta sẽ sử dụng lớp DatagramSocket và DatagramPacket. Truyền tin hướng liên kết nghĩa là cần có giai đoạn thiết lập liên kết và giải phóng liên kết trước khi truyền tin. Dữ liệu được truyền trên mạng Internet dưới dạng các gói (packet) có kích thước hữu hạn được gọi là datagram. Mỗi datagram chứa một header và một payload. Header chứa địa chỉ và cổng cần truyền gói tin đến, cũng như địa chỉ và cổng xuất phát của gói tin, và các thông tin khác được sử dụng để đảm bảo độ tin cậy truyền tin, payload chứa dữ liệu. Tuy nhiên do các datagram có chiều dài hữu hạn nên thường phải phân chia dữ liệu thành nhiều gói và khôi phục lại dữ liệu ban đầu từ các gói ở nơi nhận. Trong quá trình truyền tin có thể có thể có một hay nhiều gói bị mất hay bị hỏng và cần phải truyền lại hoặc các gói tin đến không theo đúng trình tự. Để tránh những điều này, việc phân chia dữ liệu thành các gói, tạo các header, phân tích header của các gói đến, quản lý danh sách các gói đã nhận được và các gói chưa nhận được, ... rất nhiều công việc cần phải thực hiện, và đòi hỏi rất nhiều phần mềm phức tạp. Thật may mắn, ta không cần phải tự thực hiện công việc này. Socket là một cuộc cách mạng của Berkeley UNIX. Chúng cho phép người lập trình xem một liên kết mạng như là một luồng mà có thể đọc dữ liệu ra hay ghi dữ liệu vào từ luồng này. Về mặt lịch sử Socket là một sự mở rộng của một trong những ý tưởng quan trọng nhất của UNIX: tất cả các thao tác vào/ra giống như vào ra tệp tin đối với người lập trình, cho dù ta đang làm việc với bàn phím, màn hình đồ họa, một file thông thường, hay một liên kết mạng. Các Socket che dấu người lập trình khỏi các chi tiết mức thấp của mạng như môi kiểu đường truyền, các kích thước gói, yêu cầu truyền lại gói, các địa chỉ mạng... Một socket có thể thực hiện bảy thao tác cơ bản: Kết nối với một máy ở xa (ví dụ, chuẩn bị để gửi và nhận dữ liệu) Gửi dữ liệu Nhận dữ liệu Ngắt liên kêt Gán cổng Nghe dữ liệu đến Chấp nhận liên kết từ các máy ở xa trên cổng đã được gán Lớp Socket của Java được sử dụng bởi cả client và server, có các phương thức tương ứng với bốn thao tác đầu tiên. Ba thao tác cuối chỉ cần cho server để chờ các client liên kết với chúng. Các thao tác này được cài đặt bởi lớp ServerSocket. Các socket cho client thường được sử dụng theo mô hình sau: Một socket mới được tạo ra bằng cách sử dụng hàm Socket(). Socket cố gắng liên kết với một host ở xa. Mỗi khi liên kết được thiết lập, các host ở xa nhận các luồng vào và luồng ra từ socket, và sử dụng các luồng này để gửi dữ liệu cho nhau. Kiểu liên kết này được gọi là song công (full-duplex)-các host có thể nhận và gửi dữ liệu đồng thời. Ý nghĩa của dữ liệu phụ thuộc vào giao thức. Khi việc truyền dữ liệu hoàn thành, một hoặc cả hai phía ngắt liên kết. Một số giao thức, như HTTP, đòi hỏi mỗi liên kết phải bị đóng sau mỗi khi yêu cầu được phục vụ. Các giao thức khác, chẳng hạn FTP, cho phép nhiều yêu cầu được xử lý trong một liên kết đơn. 4. Socket cho Client 4.1. Các constructor public Socket(String host, int port) throws UnknownHostException, IOException Hàm này tạo một socket TCP với host và cổng xác định, và thực hiện liên kết với host ở xa. Ví dụ: try{ Socket s = new Socket( “www.vnn.vn”,80); } catch(UnknownHostException e){ System.err.println(e); } catch(IOException e){ System.err.println(e); } Trong hàm này tham số host là hostname kiểu String, nếu host không xác định hoặc máy chủ tên miền không hoạt động thì constructor đưa ra ngoại lệ UnknownHostException. Vì một lý do nào đó mà không thể mở được socket thì constructor sẽ đưa ra ngoại lệ IOException. Có nhiều nguyên nhân khiến cho một liên kết thất bại: host mà ta đang cố gắng kết nối tới không chấp nhận liên kết, kết nối Internet có thể bị ngắt, hoặc vấn đề định tuyến có thể ngăn ngừa các gói tin của ta tới đích. Ví dụ: Viết chương trình để kiểm tra trên 1024 cổng đầu tiên những cổng nào đang có server hoạt động import java.net.*; import java.io.*; class PortScanner { public static void main(String[] args) { String host="localhost"; if(args.length>0){ host=args[0]; } for(int i=0;i<1024;i++){ try{ Socket s=new Socket(host,i); System.out.println("Co mot server dang hoat dong tren cong:"+i); } catch(UnknownHostException e){ System.err.println(e); } catch(IOException e){ System.err.println(e); } } } } public Socket(InetAddress host, int port)throws IOException Tương tự như constructor trước, constructor này tạo một socket TCP với thông tin là địa chỉ của một host được xác định bởi một đối tượng InetAddres và số hiệu cổng port, sau đó nó thực hiện kết nối tới host. Nó đưa ra ngoại lệ IOException nhưng không đưa ra ngoại lệ UnknownHostException. Constructor đưa ra ngoại lệ trong trường hợp không kết nối được tới host. public Socket (String host, int port, InetAddress interface, int localPort) throws IOException, UnknownHostException Constructor này tạo ra một socket với thông tin là địa chỉ IP được biểu diễn bởi một đối tượng String và một số hiệu cổng và thực hiện kết nối tới host đó. Socket kết nối tới host ở xa thông qua một giao tiếp mạng và số hiệu cổng cục bộ được xác định bởi hai tham số sau. Nếu localPort bằng 0 thì Java sẽ lựa chọn một cổng ngẫu nhiên có sẵn nằm trong khoảng từ 1024 đến 65535. public Socket (InetAddress host, int port, InetAddress interface, int localPort) throws IOException, UnknownHostException Constructor chỉ khác constructor trên ở chỗ địa chỉ của host lúc này được biểu diễn bởi một đối tượng InetAddress. 4.2. Nhận các thông tin về Socket Đối tượng Socket có một số trường thông tin riêng mà ta có thể truy nhập tới chúng thông qua các phương thức trả về các thông tin này. public InetAddress getInetAddress() Cho trước một đối tượng Socket, phương thức getInetAddress() cho ta biết host ở xa mà Socket kết nối tới, hoặc liên kết đã bị ngắt thì nó cho biết host ở xa mà Socket đã kết nối tới public int getPort() Phương thức này cho biết số hiệu cổng mà Socket kết nối tới trên host ở xa. public int getLocalPort() Thông thường một liên kết thường có hai đầu: host ở xa và host cục bộ. Để tìm ra số hiệu cổng ở phía host cục bộ ta gọi phương thức getLocalPort(). public InetAddress getLocalAddress() Phương thức này cho ta biết giao tiếp mạng nào mà một socket gắn kết với nó. public InputStream getInputStream() throws IOException Phương thức geInputStream() trả về một luồng nhập để đọc dữ liệu từ một socket vào chương trình. Thông thường ta có thể gắn kết luồng nhập thô InputStream tới một luồng lọc hoặc một luồng ký tự nhằm đưa các chức năng tiện ích (chẳng hạn như các luồng InputStream, hoặc InputStreamReader). Để tâng cao hiệu năng, ta có thể đệm dữ liệu bằng cách gắn kết nó với luồng lọc BufferedInputStream hoặc BufferedReader. public OutputStream getOutputStream() throws IOException Phương thức getOutputStream() trả về một luồng xuất thô để ghi dữ liệu từ ứng dụng ra đầu cuối của một socket. Thông thường, ta sẽ gắn kết luồng này với một luồng tiện lợi hơn như lớp DataOuputStream hoặc OutputStreamWriter trước khi sử dụng nó. Để tăng hiệu quả ghi. Hai phương thức getInputStream() và getOutputStream() là các phương thức cho phép ta lấy về các luồng dữ liệu nhập và xuất. Như đã đề cập ở chương 3 vào ra trong Java được tiến hành thông qua các luồng, việc làm việc với các socket cũng không phải là một ngoại lệ. Để nhận dữ liệu từ một máy ở xa ta nhận về một luồng nhập từ socket và đọc dữ liệu từ luồng đó. Để ghi dữ liệu lên một máy ở xa ta nhận về một luồng xuất từ socket và ghi dữ liệu lên luồng. Dưới đây là hình vẽ để ta hình dung trực quan hơn. InputStream OutputStream Socket Chương trình Hình 4.5 4.3. Đóng Socket Đến thời điểm ta đã có đầy đủ các thông tin cần thiết để triển khai một ứng dụng phía client. Khi viết một chương trình ứng dụng phía client tất cả mọi công việc đều chuyển về việc quản lý luồng và chuyển đổi dữ liệu từ luồng thành dạng thức mà người sử dụng có thể hiểu được. Bản thân các socket rất đơn giản bởi vì các phần việc phức tạp đã được che dấu đi. Đây chính là lý do để socket trở thành một lựa chọn có tính chiến lược cho lập trình mạng. public void close() throws IOException Các socket được đóng một cách tự động khi một trong hai luồng đóng lại, hoặc khi chương trình kết thúc, hoặc khi socket được thu hồi bởi gabbage collector. Tuy nhiên, thực tế cho thấy việc cho rằng hệ thống sẽ tự đóng socket là không tốt, đặc biệt là khi các chương trình chạy trong khoảng thời gian vô hạn. Để đóng một socket ta có thể dùng phương thức close(). Mỗi khi một Socket đã bị đóng lại, ta vẫn có thể truy xuất tới các trường thông tin InetAddress, địa chỉ cục bộ, và số hiệu cổng cục bộ thông qua các phưong thức getInetAddress(), getPort(), getLocalHost(), và getLocalPort(). Tuy nhiên khi ta gọi các phương thức getInputStream() hoặc getOutputStream() để đọc dữ liệu từ luồng đọc InputStream hoặc ghi dữ liệu OuputStream thì ngoại lệ IOException được đưa ra. Các socket đóng một nửa (Half-closed socket) Phương thức close() đóng cả các luồng nhập và luồng xuất từ socket. Trong một số trường hợp ta chỉ muốn đóng một nửa kết nối, hoặc là luồng nhập hoặc là luồng xuất. Bắt đầu từ Java 1.3, các phương thưc shutdownInput() và shutdownOutput() cho phép ta thực hiện điều này. public void shutdownInput() throws IOException public void shutdownOutput() throws IOException Các phương thức này không thực sự ngắt liên kết. Tuy nhiên, nó chỉ điều chỉnh luồng kết nối tới nó sao cho. Trong Java 1.4 đưa thêm vào hai phương thức các luồng nhập và luồng xuất mở hay đóng public boolean isInputShutdown() public boolean isOutputShutdown() 4.4. Thiết lập các tùy chọn cho Socket 4.4.1. TCP_NODELAY public void setTcpNoDelay(boolean on) throws SocketException public boolean getTcpNoDelay() throws SocketException Thiết lập giá trị TCP_NODELAY là true để đảm bảo rằng các gói tin được gửi đi nhanh nhất có thể mà không quan tâm đến kích thước của chúng. Thông thường, các gói tin nhỏ được kết hợp lại thành các gói tin lớn hơn trước khi được gửi đi. Trước khi gửi đi một gói tin khác, host cục bộ đợi để nhận các xác thực của gói tin trước đó từ hệ thống ở xa. 4.4.2. SO_LINGER public void setSoLinger(boolean on, int seconds) throws SocketException public int getSoLinger() throws SocketException Tùy chọn SO_LINGER xác định phải thực hiện công việc gì với datagram vẫn chưa được gửi đi khi một socket đã bị đóng lại. Ở chế độ mặc định, phương thức close() sẽ có hiệu lực ngay lập tức; nhưng hệ thống vẫn cố gắng để gửi phần dữ liệu còn lại. Nếu SO_LINGER được thiết lập bằng 0, các gói tin chưa được gửi đi bị phá hủy khi socket bị đóng lại. Nếu SO_LINGER lớn hơn 0, thì phương thức close() phong tỏa để chờ cho dữ liệu được gửi đi và nhận được xác thực từ phía nhận. Khi hết thời gian qui định, socket sẽ bị đóng lại và bất kỳ phần dữ liệu còn lại sẽ không được gửi đi. 4.4.3. SO_TIMEOUT public void setSoTimeout(int milliseconds) throws SocketException public int getSoTimeout() throws SocketException Thông thường khi ta đọc dữ liệu từ mộ socket, lời gọi phương thức phong tỏa cho tới khi nhận đủ số byte. Bằng cách thiết lập phương thức SO_TIMEOUT, ta sẽ đảm bảo rằng lời gọi phương thức sẽ không phong tỏa trong khoảng thời gian quá số giây quy định. 4.5. Các phương thức của lớp Object Lớp Socket nạp chồng phương thức chuẩn của lớp java.lang.Object, toString(). Vì các socket là các đối tượng tạm thời và thường chỉ tồn tại khi liên kết tồn tại. public String toString() Phương thức toString() tạo ra một xâu ký tự như sau: Socket[addr=www.oreilly.com/198.122.208.11,port=80,localport=50055] Phương thức này thường hữu ích cho việc gỡ rối. 4.6. Các ngoại lệ Socket Hầu hết các phương thức của lớp Socket được khai báo đưa ra ngoại lệ IOException, hoặc lớp con của lớp IOExcepton là lớp SocketException. 4.7. Các lớp SocketAddress Lớp SocketAddress bắt đầu có từ phiên bản Java 1.4, biểu diễn một đầu cuối của liên kết. Lớp SocketAddress là một lớp trừu tượng mà không có phương thức nào ngoài construtor mặc định. Lớp này có thể được sử dụng cho cả các socket TCP và socket không phải là TCP. Các lớp con của lớp SocketAddress cung cấp thông tin chi tiết hơn thích hợp cho kiểu socket. Trong thực tế, chỉ hỗ trợ TCP/IP. Mục đích chính của lớp SocketAddress là cung cấp một nơi lưu trữ các thông tin liên kết socket tạm thời (như địa chỉ IP và số hiệu cổng) có thể được sử dụng lại để tạo ra socket mới. public SocketAddress getRemoteSocketAddress() public SocketAddress getLocalSocketAddress() Cả hai phương thức này trả về giá trị null nếu socket vẫn chưa kết nối tới. 5. Lớp ServerSocket Lớp ServerSocket có đủ mọi thứ ta cần để vi
Tài liệu liên quan