ĐỀ 1
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: y x4 2x2 3 (C).
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Tìm m để đường thẳng y m cắt đồ thị (C) tại bốn điểm phân biệt M, N, P, Q ( sắp thứ tự từ trái
sang phải) sao cho độ dài các đoạn thẳng MN, NP, PQ được giả sử là độ dài 3 cạnh của một tam
giác bất kỳ
30 trang |
Chia sẻ: nguyenlinh90 | Lượt xem: 767 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu 30 Đề thi thử đại học môn Toán, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐỀ 1
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: 4 22 3 y x x (C).
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Tìm m để đường thẳng y m cắt đồ thị (C) tại bốn điểm phân biệt M, N, P, Q ( sắp thứ tự từ trái
sang phải) sao cho độ dài các đoạn thẳng MN, NP, PQ được giả sử là độ dài 3 cạnh của một tam
giác bất kỳ.
Câu II (2,0 điểm)
1. Giải phương trình: 2sin .sin 4 2 2 cos 4 3 cos .sin .cos 2
6
x x x x x x
2. Giải hệ phương trình:
2 22 3 8 1
, y
8 3 13
x y y x x
x x y y
.
Câu III (1,0 điểm) . Tính tích phân: I =
4
2
1
1
4
x
x
x e dx
x xe
.
Câu IV (1,0 điểm).
Tính thể tích khối tứ diện ABCD biết AB = a, AC = b, AD = c và 0BAC CAD DAB 60 .
Câu V (1,0 điểm). Chứng minh phương trình: 1 1 xxx x luôn có nghiệm thực dương duy nhất.
B- PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được chọn một trong hai phần
B.1. CHƯƠNG TRÌNH CHUẨN
Câu VI a (2,0 điểm)
1. Trong mặt phẳng Oxy, cho đường thẳng : 1 0d x y và đường tròn 2 2: 2 4 0C x y x y .
Tìm tọa độ điểm M thuộc đường thẳng d mà qua đó kẻ được hai đường thẳng tiếp xúc với đường tròn
C tại A và B sao cho 060AMB .
2. Trong không gian Oxyz, cho 3 điểm ;0;0 , B 0; ;0 , C 0;0; A a b c với a, b, c là các số dương
thay đổi và thỏa mãn 2 2 2 3a b c . Xác định a, b, c sao cho khoảng cách từ gốc toạ độ O 0;0;0
đến mặt phẳng ABC đạt giá trị lớn nhất.
Câu VII a (1,0 điểm). Tìm a, b để phương trình 2z az b 0 có nhận số phức z 1 i làm
nghiệm.
B.2. CHƯƠNG TRÌNH NÂNG CAO
Câu VI b (2,0 điểm)
1. Trong mặt phẳng Oxy, cho prabol 2:P y x . Viết phương trình đường thẳng d đi qua
M(1; 3) sao cho diện tích hình phẳng giới hạn bởi (P) và d đạt giá trị nhỏ nhất.
2. Trong không gian với hệ toạ độ Oxyz, cho hai điểm A 1;5;0 , B 3;3;6 và đường
thẳng d: 1 1
2 1 2
x y z
. Xác định vị trí của điểm C trên đường thẳng d để diện tích tam giác ABC
đạt giá trị nhỏ nhất.
Câu VII b (1,0 điểm). Giải phương trình:
2 32 2 4 2 4 24 1 2 2
2
1log 1 log 1 log 1 log 1
3
x x x x x x x x .
ĐỀ 2
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: 2 3
2
xy
x
(C).
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Gọi I là giao điểm của hai tiệm cận. Tìm điểm M thuộc (C). Biết tiếp tuyến của (C) tại M cắt các
đường tiệm cận tại J và K sao cho đường tròn ngoại tiếp tam giác IJK có diện tích nhỏ nhất.
Câu II (2,0 điểm)
1. Tìm nghiệm 0;
2
x
của phương trình sau đây :
2 2 34sin 3 sin 2 1 2cos
22 4
x x x
.
2. Giải hệ phương trình:
3 3
2 2
8 27 18
4 6
x y y
x y x y
.
Câu III (1,0 điểm) . Tính tích phân: I =
2
10 5 9
0
1 cos .sin .cosI x x xdx
.
Câu IV (1,0 điểm). Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại đỉnh B, BA = BC =
2a, hình chiếu vuông góc của S trên mặt phẳng đáy (ABC) là trung điểm E của AB và SE = 2a. Gọi I, J
lần lượt là trung điểm của EC, SC ; M là điểm di động trên tia đối của tia BA sao cho
0 0 90ECM và H là hình chiếu vuông góc của S trên MC. Tính thể tích của khối tứ diện
EHIJ theo , a và tìm để thể tích đó lớn nhất.
Câu V (1,0 điểm). Chứng minh rằng:
x 1
1 x 1 x 2x x x 0;1
e
.
B- PHẦN RIÊNG (3,0 điểm)
B.1. CHƯƠNG TRÌNH CHUẨN
Câu VI a (2,0 điểm)
1. Trong mặt phẳng Oxy, cho hình thoi ABCD có phương trình hai cạnh AB, AD thứ tự là:
2 2 0 ; 2x + y + 1= 0x y . Cạnh BD chứa điểm M 1; 2 . Tìm toạ độ các đỉnh của hình thoi.
2. Trong không gian Oxyz, cho đường thẳng 1 2:
1 2 2
x y zd
. Viết phương trình mặt phẳng (P)
biết rằng (P) chứa đường thẳng d và tạo với mặt phẳng (xOy) một góc nhỏ nhất.
Câu VII a (1,0 điểm).
Tìm tập hợp điểm M mà tọa độ phức của nó thỏa mãn điều kiện: z 2 i 1 .
B.2. CHƯƠNG TRÌNH NÂNG CAO
Câu VI b (2,0 điểm)
1. Trong mặt phẳng Oxy, cho tam giác ABC cân tại BOx, phương trình cạnh AB có dạng:
3 2 3 0x y ; tâm đường tròn ngoại tiếp tam giác là 0;2I . Tìm toạ độ các đỉnh của tam giác.
2. Trong không gian Oxyz, cho hai điểm A 2;0;0 và J 2;0;0 . Giả sử là mặt phẳng thay đổi,
nhưng luôn đi qua đường thẳng AJ và cắt các trục Oy, Oz lần lượt tại các điểm B 0;b;0 , C 0;0;c
với b,c 0 . Chứng minh rằng: bcb c
2
và tìm b, c sao cho diện tích tam giác ABC nhỏ nhất.
Câu VII b (1,0 điểm).
Tính
0 0 1 1 2 2 3 3 2010 2010
2010 2010 2010 2010 20102 C 2 C 2 C 2 C 2 CP ...
1.2 2.3 3.4 4.5 2011.2012
.
ĐỀ 3
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: 3 21 5 4 4
3
2
y x mx mx (C).
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m 0 .
2. Tìm m để hàm số đạt cực trị tại 1 2, x x sao cho biểu thức :
22
2 1
2 2
1 2
5 12
5 12
x mx mmA
x mx m m
đạt giá trị nhỏ nhất.
Câu II (2,0 điểm)
1. Giải phương trình: tan tan 2sin 1 6cos 3 sin 1 tan tan
2
xx x x x x x
.
2. Giải hệ phương trình:
6 2 6
5 2
6 2 6
2 5
2
2 33
2
2 33
xyx x y
x x
xyy y x
x y
, y x .
Câu III (1,0 điểm) . Tính tích phân:
ln5
ln 2
.
10 1 1x x
dxI
e e
Câu IV (1,0 điểm). Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng a.
Cạnh bên SA vuông góc với đáy hình chóp và SA a 2 . Gọi H và K lần lượt là hình chiếu của A
trên SB, SD. Chứng minh SC AHK và tính thể tích O.AHK.
Câu V (1,0 điểm). Tìm m để phương trình sau có nghiệm:
4 3 3 3 4 1 1 0m x m x m
B- PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được chọn một trong hai phần
B.1. CHƯƠNG TRÌNH CHUẨN
Câu VI a (2,0 điểm)
1. Trong mặt phẳng Oxy, cho hai đường tròn: 2 22 21 2C : x y 9 ; C : x 1 y 1 25 . Gọi
A, B là các giao điểm của 1C và 2C . Viết phương trình đường thẳng AB. Hãy chứng minh rằng
nếu K AB thì KI KJ với I, J lần lượt là tâm của 1C và 2C .
2. Trong không gian Oxyz, cho điểm A 5;5;0 và đường thẳng x 1 y 1 z 7d :
2 3 4
. Tìm toạ độ
các điểm B, C thuộc d sao cho tam giác ABC vuông cân tại A và BC 2 17 .
Câu VII a (1,0 điểm). Giải phương trình: 2z 2011 0 trên tập số phức .
B.2. CHƯƠNG TRÌNH NÂNG CAO
Câu VI b (2,0 điểm)
1. Trong mặt phẳng Oxy, xác định toạ độ các điểm B và C của tam giác đều ABC biết A 3; 5 và
trọng tâm G 1;1 .
2. Trong không gian Oxyz, cho hai điểm 0;0; 3 , N 2;0; 1M và mặt phẳng
: 3 8 7 1 0x y z . Tìm tọa độ P nằm trên mặt phẳng sao cho tam giác MNP đều.
Câu VII b (1,0 điểm). Giải hệ phương trình:
3 3log y log x
3 3
x 2y 27
log y log x 1
.
ĐỀ 4
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: 1
1
xy
x
(C).
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Tìm điểm M thuộc (C) để tổng khoảng cách từ M đến hai trục toạ độ là nhỏ nhất.
Câu II (2,0 điểm)
1. Giải phương trình: 2 2
cos 2 1tan 3 tan
2 cos
π xx x
x
.
2. Giải hệ phương trình:
3 3
2 3
1 3
82
y x
x y
Câu III (1,0 điểm) . Tính tích phân:
4
2
3
4
tan tan xI x x e dx
.
Câu IV (1,0 điểm). Cho hình chóp S.ABC có SA ABC , tam giác ABC vuông cân đỉnh C và
SC a . Tính góc giữa hai mặt phẳng SBC và ABC để thể tích khối chóp lớn nhất.
Câu V (1,0 điểm). Cho a, b, c, d là các số thực dương sao cho: 2 2 2 2 4a b c d . Chứng minh:
3 3 3 3 8a b c d .
B- PHẦN RIÊNG (3,0 điểm)
B.1. CHƯƠNG TRÌNH CHUẨN
Câu VI a (2,0 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC với 5,AB 1; 1 ,C đường thẳng AB
có phương trình 2 3 0x y và trọng tâm G của tam giác ABC thuộc đường thẳng 2 0.x y
Hãy tìm toạ độ các điểm A và B.
2. Trong không gian với hệ toạ độ Oxyz, cho các điểm 3;1;1 , B 7;3;9 , C 2; 2;2A và mặt phẳng
(P) có phương trình: 3 0x y z .
Tìm điểm M thuộc mặt phẳng (P) sao cho 2 3MA MB MC
nhỏ nhất.
Câu VII a (1,0 điểm)
Gọi A, B theo thứ tự là các điểm của mặt phẳng phức biểu diễn số z khác 0 và 1
2
iz z . Chứng minh
tam giác OAB vuông cân.
B.2. CHƯƠNG TRÌNH NÂNG CAO
Câu VI b (2,0 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường thẳng : 2 1 2 0d x my và đường tròn
2 2: 2 4 4 0C x y x y . Gọi I là tâm đường tròn (C). Tìm m sao cho d cắt (C) tại hai điểm phân
biệt A và B. Với giá trị nào của m thì diện tích tam giác IAB lớn nhất và tính diện tích đó.
2. Trong không gian Oxyz, cho tam giác ABC có A 1;2;5 và phương trình hai đường trung tuyến :
1 2
x 3 y 6 z 1 x 4 y 2 z 2d : ; d :
2 2 1 1 4 1
Viết phương trình chính tắc các cạnh của tam giác ABC.
Câu VII b (1,0 điểm).
Giải hệ phương trình sau:
2 1
2 2
5 5
2 2 2
log 3 1 log 2 4 1
y x y x
x y y x y
.
ĐỀ 5
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: 3 23 1 5 4 8y x m x m x mC
1. Khảo sát sự biến thiên và vẽ đồ thị mC của hàm số khi m 0 .
2. Tìm m để mC cắt trục hoành tại 3 điểm phân biệt lập thành một cấp số nhân.
Câu II (2,0 điểm)
1. Giải phương trình: 3 18sin
cos
x
sin x x
.
2. Giải phương trình: 2 3 3 244 4 41 1 1 1 .x x x x x x x x
Câu III (1,0 điểm) . Tính tích phân:
0
1
2
1 1
dxI
x x
.
Câu IV (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thoi ; hai đường chéo
AC = 2 3 a , BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt
phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng 3
4
a . Tính thể tích khối
chóp S.ABCD theo a.
Câu V (1,0 điểm). Tìm m để bất phương trình sau vô nghiệm:
2
2
1 12 s inx s inx 7
sinx s inx 2.
1 13 s inx s inx 12
s inx s inx
m
B- PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được chọn một trong hai phần
B.1. CHƯƠNG TRÌNH CHUẨN
Câu VI a (2,0 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy, cho điểm 2;1A . Lấy điểm B thuộc trục Ox có hoành độ
0b và điểm C thuộc trục Oy có tung độ 0c sao cho tam giác ABC vuông tại A. Tìm B, C sao cho
diện tích tam giác ABC lớn nhất.
2. Trong không gian Oxyz cho các điểm 2;0;0 , M 0; 3;6A . Viết phương trình mặt phẳng P
chứa A, M và cắt các trục , Oy Oz tại các điểm tương ứng B, C sao cho 3.OABCV
Câu VII a (1,0 điểm).
Xét số phức:
1 2
i m z
m m i
. Tìm m để 1.
2
z z .
B.2. CHƯƠNG TRÌNH NÂNG CAO
Câu VI b (2,0 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường thẳng : 2 2 0x y và hai điểm
1;3 , B 3; 2A . Tìm M trên sao cho MA MB đạt giá trị lớn nhất.
2. Trong không gian Oxyz, cho hai điểm 2;3;0 , B 0; 2;0A và đường thẳng : 0
2
x t
y
z t
. Tìm
C sao cho chu vi tam giác ABC nhỏ nhất.
Câu VII b (1,0 điểm). Tìm miền xác định của hàm số: 32 lg 2 lgln 8 4x xy
ĐỀ 6
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: 3 23 2y x x C
1. Khảo sát sự biến thiên và vẽ đồ thị C của hàm số.
2. Tìm m để C có điểm cực đại và cực tiểu nằm về hai phía đối với đường tròn
2 2 2: 2 4 5 1 0mC x y mx my m .
Câu II (2,0 điểm)
1. Tìm nghiệm thuộc khoảng 0; của phương trình:
sin 3 cos37 cos 4 cos 2
2sin 2 1
x x x x
x
.
2. Tìm m để hệ bất phương trình sau có nghiệm:
5 1 5 1
2
7 7 2012 2012
2 2 3 0
x x x x
x m x m
Câu III (1,0 điểm) . Tính tích phân: I =
1
2 4 2
11 3 1
dx
x x x x
.
Câu IV (1,0 điểm). Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại C,
, AB = 2a, SAAC a vuông góc với đáy. Góc giữa hai mặt phẳng (SAB) và (SAC) bằng 060 . Gọi H,
K lần lượt là hình chiếu của A lên SB, SC. Chứng minh AK HK và tính thể tích khối chóp S.ABC.
Câu V (1,0 điểm). Cho , y, z 0,1x . Chứng minh rằng 1 1 1 1xyz x y z .
B- PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được chọn một trong hai phần
B.1. CHƯƠNG TRÌNH CHUẨN
Câu VI a (2,0 điểm)
3. Trong mặt phẳng Oxy, cho điểm 2;3M và đường thẳng : 2 1 2 1 0m x m y m .
Tìm tham số thực m để khoảng cách từ M đến đường thẳng là lớn nhất.
4. Trong không gian Oxyz, cho hai đường thẳng
1
2 1:
2 1 2
x y zd
và 2
2 2
: 3
x t
d y t
z t
. Chứng minh hai đường thẳng trên chéo nhau. Hãy
viết phương trình mặt cầu (S) biết (S) có đường kính là đoạn vuông góc chung của 1 2, d d .
Câu VII a (1,0 điểm). Cho M, N là hai điểm trong mặt phẳng phức biểu diễn theo thứ tự các số phức
1 2, zz khác 0 thỏa mãn đẳng thức
2 2
1 2 1 2z z z z . Chứng minh tam giác OMN là tam giác đều.
B.2. CHƯƠNG TRÌNH NÂNG CAO
Câu VI b (2,0 điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao
điểm của hai đường thẳng 1 2: 3 0, d : 6 0d x y x y . Trung điểm M của cạnh AD là giao điểm
của đường thẳng 1d với trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật.
2. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng và mặt cầu S lần lượt có phương trình:
2 2 22 2 3 0 ; 1 2 4 25.x y z x y z Xét vị trí tương đối giữa mặt cầu S và mặt
phẳng . Viết phương trình mặt cầu V đối xứng với S qua mặt phẳng .
Câu VII b (1,0 điểm). Giải bất phương trình: 2 2log 3 1 6 1 log 7 10x x .
ĐỀ 7
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: 3 2
1
xy C
x
1. Khảo sát sự biến thiên và vẽ đồ thị C của hàm số.
2. Gọi I là giao điểm hai tiệm cận. Viết phương trình tiếp tuyến d của đồ thị hàm số biết d cắt tiệm cận
đứng và tiệm cận ngang lần lượt tại A và B thoả 5 26cos
26
BAI .
Câu II (2,0 điểm)
1. Giải phương trình: )
2
sin( 2
cos sin
2 sincot
2
1
x
xx
xx
2. Giải bất phương trình sau: 2 2 23 2 4 3 2 5 4x x x x x x
Câu III (1,0 điểm) Tính diện tích hình phẳng giới hạn bởi ba đường sau:
Elip (E):
2
2 1
4
x y , đường thẳng d: 2 3 4 0x y và trục hoành.
Câu IV (1,0 điểm). Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A và D,
2 , CD = a AB AD a , góc giữa hai mặt phẳng (SBC) là (ABCD) bằng 060 . Gọi I là trung điểm của
cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích
khối chóp S.ABCD.
Câu V (1,0 điểm). Tìm m để phương trình: 2 2cos 2mx x có đúng 2 nghiệm thực phân biệt trong
đoạn 0;
2
.
B- PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được chọn một trong hai phần
B.1. CHƯƠNG TRÌNH CHUẨN
Câu VI a (2,0 điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy cho ABC có trọng tâm 2;0 .G Biết phương trình các
cạnh AB,AC theo thứ tự là 4 14 0x y , 2 5 2 0.x y Tìm tọa độ các đỉnh A,B,C .
2. Trong không gian Oxy cho các điểm 3;5; 5 , B 5; 3;7A và mặt phẳng : 0P x y z .
Tìm điểm M P sao cho 2 2 MA MB nhỏ nhất .
Câu VII a (1,0 điểm)
Trong khai triển sau đây có bao nhiêu số hạng hữu tỉ 43 5 n biết n thỏa mãn
1 2 3 2 496
4 1 4 1 4 1 4 1... 2 1
n
n n n nC C C C .
B.2. CHƯƠNG TRÌNH NÂNG CAO
Câu VI b (2,0 điểm)
1. Cho parabol 2.y x Một góc vuông ở đỉnh O cắt Parabol tại 1A và 2A . Hình chiếu của 1 2 , AA lên
Ox là 1 2, BB . Chứng minh rằng: 1 2.OB OB const .
2. Cho mặt cầu: 2 2 2: 2 2 2 0S x y z x z và các điểm 0;1;1 , A B 1; 2; 3
C 1;0; 3 . Tìm điểm D thuộc mặt cầu (S) sao cho thể tích tứ diện ABCD lớn nhất.
Câu VII b (1,0 điểm) Tìm số nguyên dương n bé nhất để 3
1
n
i
i
là số thực .
ĐỀ 8
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: 3 21 83
3 3
y x x x (C).
1. Khảo sát sự biến thiên và vẽ đồ thị C của hàm số.
2. Lập phương trình đường thẳng d song song với trục hoành và cắt đồ thị (C) tại hai điểm phân biệt
A, B sao cho tam giác OAB cân tại O ( O là gốc toạ độ).
Câu II (2,0 điểm)
1. Giải phương trình: 2 11 4sin sin 3 2x x .
2. Giải phương trình : 4 2 21 1 2x x x x .
Câu III (1,0 điểm). Tính tích phân:
3
0 1 s in cos
dxI
x x
Câu IV (1,0 điểm). Cho lăng trụ tam giác .ABC A B C có đáy ABC là tam giác đều cạnh a và đỉnh A
cách đều các đỉnh A, B, C. Cạnh AA tạo với đáy góc 060 . Tính thể tích khối lăng trụ.
Câu V (1,0 điểm). Cho các số thực x, y, z thỏa:
2 2
2 2
3
16
x xy y
y yz z
.
Chứng minh rằng: 8xy yz zx .
B- PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được chọn một trong hai phần
B.1. CHƯƠNG TRÌNH CHUẨN
Câu VI a (2,0 điểm)
1.Trong mặt phẳng Oxy, cho điểm 7;8P và hai đường thẳng: 1 : 2 5 3 0,d x y
2 d : 5 2 7 0x y cắt nhau tại A. Viết phương trình đường thẳng d đi qua P và tạo với 1 2, d d thành
tam giác cân tại A và có diện tích bằng 29
2
.
2. Trong không gian Oxyz, cho điểm 4;5;6 .H Viết phương trình mặt phẳng (P) qua H, cắt các trục
toạ độ Ox, Oy, Oz lần lượt tại A, B, C sao cho H là trực tâm của tam giác ABC.
Câu VII a (1,0 điểm) . Tính ni với n .
B.2. CHƯƠNG TRÌNH NÂNG CAO
Câu VI b (2,0 điểm)
1. Trong mặt phẳng Oxy, cho Parabol 2: 64 P y x và đường thẳng : 4 3 46 0x y . Tìm A
thuộc (P) sao cho khoảng cách từ A đến nhỏ nhất. Tính khoảng cách nhỏ nhất đó.
2. Trong không gian Oxyz, cho mặt phẳng (P) cắt Ox, Oy, Oz lần lượt tại
A a;0;0 ,B 0; b;0 ,C 0;0;c
Gọi , , lần lượt là các góc của các mặt phẳng (OAB), (OBC) , (OCA) với mặt phẳng (ABC).
Chứng minh rằng:
2 2 2os os os 1.c c c
Câu VII b (1,0 điểm)
Giải hệ phương trình:
) 1 4 () log 5 (log
) 6 12( log) 22( log2
21
2
21
xy
xxy xxy
yx
yx .
ĐỀ 9
A- PHẦN CHUNG (7,0 điểm)
Câu I (2,0 điểm) . Cho hàm số: 3 22 3 4y x mx m x có đồ thị mC
1. Khảo sát sự biến thiên và vẽ đồ thị C của hàm số khi 1m .
2. Cho đường thẳng : 4d y x và điểm 1;3E . Tìm tất cả các giá trị của tham số m sao cho d cắt
mC tại ba điểm phân biệt 0;4 , , A B C sao cho tam giác EBC có diện tích bằng 4 .
Câu II (2,0 điểm)
1. Giải phương trình: 3 3 2 3 2cos3 cos sin 3 sin
8
x x x x .
2. Giải hệ phương trình:
2
2
1 4
,
1 2
x y y x y
x y
x y x y
.
Câu III (1,0 điểm) Tính tích phân:
4
2
ln 9
ln 9 ln 3
x
I dx
x x
Câu IV (1,0 điểm). Cho lăng trụ đứng tứ giác đều .ABCD A B C D có chiều cao bằng h. Góc giữa hai
đường chéo của hai mặt bên kề nhau kẻ từ một đỉnh bằng 0 0 0 90 . Tính thể tích khối lăng trụ
đã cho.
Câu V (1,0 điểm). Giải phương trình:
2 2
2 2 2
3 2 2 2 3 10
33 3 4 4 3
x x x x x x x x x x
x x x x x x x x x x x x x x x x
B- PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được chọn một trong hai phần
B.1. CHƯƠNG TRÌNH CHUẨN
Câu VI a (2,0 điểm)
1. Trong mặt phẳng Oxy, cho hình bình hành ABCD có diện tích bằng 4. Biết toạ độ các đỉnh
2;0 , B 3;0A và I là giao điểm của hai đường chéo AC và BD, I nằm trên đường thẳng y x . Xác
định toạ độ các điểm C, D.
2. Trong không gian Oxyz, cho hai đường thẳng: 1 : 1 1 2
x y zd và 2
1 1:
2 1 1
x y zd
. Chứng minh
1 2, d d chéo nhau. Tìm 1 2,A d B d sao cho đường thẳng AB song song với mặt phẳng
: 0P x y z và độ dài 2AB .
Câu VII a (1,0 điểm)
Trên các cạnh AB, BC, CD, DA của hình vuông ABCD lần lượt cho 1, 2, 3 và n điểm phân biệt khác
A, B, C, D. Tìm n